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Abstract. The existence, uniqueness and iterative approximations of fixed

points for some contractive mappings of integral type defined in complete
metric spaces with w-distance are proved. Four examples are given to

demonstrate that the results in this paper extend and improve some well-
known results in the literature.

AMS Mathematics Subject Classification : 54H25

Key words and phrases : Contractive mappings of integral type, w-distance,

fixed point theorem

1. Introduction

Throughout this paper, we assume that R = (−∞,+∞),R+ = [0,+∞),
N0 = {0} ∪ N, where N denotes the set of all positive integers and

Φ1 =
{
ϕ | ϕ : R+ → R+ satisfies that ϕ is Lebesgue integrable, summable on

each compact subset of R+ and
∫ ε

0
ϕ(t)dt > 0, ∀ε > 0

}
;

Φ2 =
{
ϕ | ϕ belongs to Φ1 and satisfies that

∫ u

0
ϕ(t)dt <

∫ v

0
ϕ(t)dt, ∀u, v ∈

R+ with u < v
}

;

Φ3 = {ϕ | ϕ : R+ → R+ is lower semicontinuous and ϕ−1(0) = {0}};
Φ4 = {ϕ | ϕ : R+ → R+ is a continuous and nondecreasing function such that

ϕ(t) = 0 if and only if t = 0}.
In 2001, Rhoades [17] proved the following fixed point theorem, which is a

generalization of the Banach fixed point theorem.

Theorem 1.1. [17] Let (X, d) be a complete metric space and let T : X → X
be a mapping such that

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)), ∀x, y ∈ X, (1.1)

Received January 30, 2019. Revised August 9, 2019. Accepted August 10, 2019.
∗Corresponding author.
†This work was supported by the Gyeongsang National University Fund for Professors on Sab-

batical Leave, 2018.

c© 2019 KSCAM.

411



412 Z. Liu, H. Wang, N. Liu, S.M. Kang

where ψ ∈ Φ4. Then T has a unique fixed point.

In 2002, Branciari [1] gave an interesting integral version of the Banach fixed
point theorem by introducing the concept of contractive mapping of integral type
and discussed the existence of fixed points for the following contractive mapping
of integral type in complete metric spaces.

Theorem 1.2. [1] Let T be a mapping from a complete metric space (X, d) into
itself satisfying ∫ d(Tx,Ty)

0

ϕ(t)dt ≤ c
∫ d(x,y)

0

ϕ(t)dt, ∀x, y ∈ X, (1.2)

where c ∈ (0, 1) is a constant and ϕ ∈ Φ1. Then T has a unique fixed point
a ∈ X such that limn→∞ Tnx = a for each x ∈ X.

The existence of fixed points for various contractive mappings of integral
type has been researched by many authors under different conditions, see, for
example, [1, 7, 12–16] and the references cited therein. In 2015, Liu et al. [15]
established two fixed point theorems for the contractive mappings of integral
type.

Theorem 1.3. [15] Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0

ϕ(t)dt ≤
∫ d(x,y)

0

ϕ(t)dt− ψ(d(x, y)), ∀x, y ∈ X, (1.3)

where (ϕ,ψ) ∈ Φ1 × Φ3. Then f has a unique fixed point a ∈ X such that
limn→∞ fnx = a for each x ∈ X.

Theorem 1.4. [15] Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0

ϕ(t)dt ≤
∫ d(x,y)

0

ϕ(t)dt− ψ(d(fx, fy)), ∀x, y ∈ X, (1.4)

where (ϕ,ψ) ∈ Φ1 × Φ3. Then f has a unique fixed point a ∈ X such that
limn→∞ fnx = a for each x ∈ X.

In 1996, Kada et al. [9] introduced the concept of w-distance in metric spaces
and proved some fixed point theorems for some contractive mappings under w-
distance. The results in [9] are generalizations the results of Caristi [2], Ekeland
[4] and Takahashi [18]. Afterwards, the researchers in [3, 5, 6, 8, 10, 11] obtained
the existence of fixed points for some contractive mappings with w-distance.

The aim of this paper is to prove the existence, uniqueness and iterative
approximations of fixed points for some contractive conditions of integral type
with w-distance in complete metric spaces. The results presented in this paper
generalize Theorems 1.1-1.4. Four illustrative examples are constructed.
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2. Preliminaries

Recall that a self mapping f in a metric space X is called orbitally continuous
if limn→∞ fnx = u implies limn→∞ fn+1x = fu for each {fnx}n∈N0

⊆ X and
u ∈ X.

Definition 2.1. [9] Let (X, d) be a metric space. A function p : X ×X → R+

is called a w-distance in X if it satisfies the following
(p1) p(x, z) ≤ p(x, y) + p(y, z),∀x, y, z ∈ X;
(p2) for each x ∈ X, a mapping p(x, ·) : X → R+ is lower semi-continuous,

that is, if {yn}n∈N is a sequence in X with limn→∞ yn = y ∈ X, then p(x, y) ≤
lim infn→∞ p(x, yn);

(p3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ
imply d(x, y) ≤ ε.

Lemma 2.2. [9] Let X be a metric space with metric d and let p be a w-distance
in X. Let {xn}n∈N and {yn}n∈N be sequences in X, let {αn}n∈N and {βn}n∈N
be sequences in R+ converging to 0, and let x, y, z ∈ X. Then the following hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In
particular, if p(x, y) = 0 and p(x, z) = 0, then y = z;

(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then {yn}n∈N converges
to z;

(c) If p(xn, xm) ≤ αn for any n,m ∈ N with n > m, then {xn}n∈N is a
Cauchy sequence;

(d) If p(x, xn) ≤ αn for any n ∈ N, then {xn}n∈N is a Cauchy sequence.

Lemma 2.3. [14] Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with
limn→∞ rn = a. Then

lim
n→∞

∫ rn

0

ϕ(t)dt =

∫ a

0

ϕ(t)dt.

Lemma 2.4. [14] Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence. Then
limn→∞

∫ rn
0
ϕ(t)dt = 0 if and only if limn→∞ rn = 0.

Remark 2.1. (1.1) is a special case of (1.3).
In fact, put ϕ(t) = 1 for all t ∈ R+. It follows from Φ4 ⊆ Φ3 that (1.3) yields

(1.1).

Remark 2.2. (1.2) is a special case of (1.3).
In fact, put ψ(s) = (1 − c)

∫ s

0
ϕ(t)dt for all s ∈ R+, where c ∈ (0, 1) is a

constant and ϕ ∈ Φ1. It follows from Lemma 2.3 and ϕ ∈ Φ1 that ψ ∈ Φ3 and
(1.3) reduces to (1.2).

3. Fixed point theorems for contractive mappings with w-distance

In this section we establish four fixed point theorems for contractive mappings
(3.1), (3.19), (3.32) and (3.33) below.
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Theorem 3.1. Let (X, d) be a complete metric space and let p be a w-distance
in X. Assume that f : X → X satisfies that∫ p(fx,fy)

0

ϕ(t)dt ≤
∫ p(x,y)

0

ϕ(t)dt− ψ(p(x, y)), ∀x, y ∈ X, (3.1)

where (ϕ,ψ) ∈ Φ1 × Φ3. Then f has a unique fixed point u ∈ X such that
p(u, u) = 0, limn→∞ p(fnx0, u) = 0 and limn→∞ fnx0 = u for each x0 ∈ X.

Proof. Firstly we show that f has a fixed point u ∈ X. Pick an arbitrary point
x0 in X and put xn = fnx0 for each n ∈ N0. Now we consider two cases as
follows:

Case 1. xn0 = xn0−1 for some n0 ∈ N. It follows that xn0−1 is a fixed point
of f and limn→∞ fnx0 = xn0−1. Suppose that p(xn0−1, xn0−1) > 0. Making use
of (3.1) and (ϕ,ψ) ∈ Φ1 × Φ3, we conclude immediately that∫ p(xn0−1,xn0−1)

0

ϕ(t)dt =

∫ p(fxn0−1,fxn0−1)

0

ϕ(t)dt

≤
∫ p(xn0−1,xn0−1)

0

ϕ(t)dt− ψ(p(xn0−1, xn0−1))

<

∫ p(xn0−1,xn0−1)

0

ϕ(t)dt,

which is a contradiction. Hence p(xn0−1, xn0−1) = 0, which means that

lim
n→∞

p(fnx0, xn0−1) = p(xn0−1, xn0−1) = 0;

Case 2. xn 6= xn−1 for all n ∈ N. Suppose that

p(xn0−1, xn0
) = 0 for some n0 ∈ N. (3.2)

It follows from (3.1), (3.2) and (ϕ,ψ) ∈ Φ1 × Φ3 that

0 ≤
∫ p(xn0 ,xn0+1)

0

ϕ(t)dt =

∫ p(fxn0−1,fxn0 )

0

ϕ(t)dt

≤
∫ p(xn0−1,xn0 )

0

ϕ(t)dt− ψ(p(xn0−1, xn0
)) = 0,

which yields that ∫ p(xn0 ,xn0+1)

0

ϕ(t)dt = 0,

which together with ϕ ∈ Φ1 gives that

p(xn0
, xn0+1) = 0. (3.3)

Combining (3.2), (3.3) and (p1), we know that

0 ≤ p(xn0−1, xn0+1) ≤ p(xn0−1, xn0
) + p(xn0

, xn0+1) = 0,

that is,
p(xn0−1, xn0+1) = 0. (3.4)
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By virtue of (3.2), (3.4) and Lemma 2.2, we deduce that xn0
= xn0+1, which is

a contradiction and hence

p(xn−1, xn) > 0, ∀n ∈ N. (3.5)

In light of (3.1), (3.5) and (ϕ,ψ) ∈ Φ1 × Φ3, we conclude that∫ p(xn,xn+1)

0

ϕ(t)dt =

∫ p(fxn−1,fxn)

0

ϕ(t)dt

≤
∫ p(xn−1,xn)

0

ϕ(t)dt− ψ(p(xn−1, xn)) <

∫ p(xn−1,xn)

0

ϕ(t)dt, ∀n ∈ N.

By means of (3.5) and ϕ ∈ Φ1, we get that

0 < p(xn, xn+1) < p(xn−1, xn), ∀n ∈ N. (3.6)

It follows from (3.6) that {p(xn, xn+1)}n∈N0
is a positive and strictly decreasing

sequence. Hence there exists a constant v ≥ 0 with

lim
n→∞

p(xn, xn+1) = v. (3.7)

Now we claim v = 0. Suppose that v > 0. In view of (3.1), (3.7), (ϕ,ψ) ∈
Φ1 × Φ3 and Lemma 2.3, we infer that∫ v

0

ϕ(t)dt = lim sup
n→∞

∫ p(xn,xn+1)

0

ϕ(t)dt = lim sup
n→∞

∫ p(fxn−1,fxn)

0

ϕ(t)dt

≤ lim sup
n→∞

(∫ p(xn−1,xn)

0

ϕ(t)dt− ψ(p(xn−1, xn))

)
≤ lim sup

n→∞

∫ p(xn−1,xn)

0

ϕ(t)dt− lim inf
n→∞

ψ(p(xn−1, xn))

≤
∫ v

0

ϕ(t)dt− ψ(v) <

∫ v

0

ϕ(t)dt,

which is ridiculous. Therefore, v = 0 and hence

lim
n→∞

p(xn, xn+1) = 0. (3.8)

In a similar manner, we find that

lim
n→∞

p(xn+1, xn) = 0. (3.9)

Now we claim that

lim
n,m→∞

p(xn, xm) = 0. (3.10)

Otherwise there exists a constant ε > 0 such that for each positive integer k,
there are subsequences {m(k)}k∈N, {n(k)}k∈N such that

m(k) > n(k) > k, p(xn(k), xm(k)) > ε, ∀k ∈ N. (3.11)
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For each positive integer k, let m(k) denote the least integer exceeding n(k) and
satisfying (3.11). It is clear that

p(xn(k), xm(k)) > ε and p(xn(k), xm(k)−1) ≤ ε, ∀k ∈ N. (3.12)

On account of (p1) and (3.12), we get that, ∀k ∈ N

ε < p(xn(k), xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1)

+ p(xm(k)−1, xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xn(k)) + ε+ p(xm(k)−1, xm(k)).

(3.13)

Letting k →∞ in (3.13) and using (3.8), (3.9) and (3.12), we know that

lim
k→∞

p(xn(k), xm(k)) = lim
k→∞

p(xn(k)−1, xm(k)−1) = ε. (3.14)

In light of (3.1), (3.14), (ϕ,ψ) ∈ Φ1 × Φ3 and Lemma 2.3, we conclude that∫ ε

0

ϕ(t)dt = lim sup
k→∞

∫ p(xn(k),xm(k))

0

ϕ(t)dt = lim sup
k→∞

∫ p(fxn(k)−1,fxm(k)−1)

0

ϕ(t)dt

≤ lim sup
k→∞

(∫ p(xn(k)−1,xm(k)−1)

0

ϕ(t)dt− ψ(p(xn(k)−1, xm(k)−1))

)
≤ lim sup

k→∞

∫ p(xn(k)−1,xm(k)−1)

0

ϕ(t)dt− lim inf
k→∞

ψ(p(xn(k)−1, xm(k)−1))

≤
∫ ε

0

ϕ(t)dt− ψ(ε) <

∫ ε

0

ϕ(t)dt,

which is absurd. Hence (3.10) holds.
Given ε > 0 and δ denotes the number appearing in (p3). It follows from

(3.10) that there exists N ∈ N satisfying

p(xN , xn) < δ, p(xN , xm) < δ, ∀n,m > N,

which together with (p3) ensures that

d(xn, xm) ≤ ε, ∀n,m > N.

Hence {xn}n∈N0
is a Cauchy sequence. By completeness of X, there exists a

point u ∈ X satisfying

lim
n→∞

xn = u. (3.15)

It follows from (3.10) that for each ε > 0 there exists M ∈ N satisfying

p(xn, xm) < ε, ∀m > n > M,

which together with (p2) and (3.15) yields that

0 ≤ p(xn, u) ≤ lim inf
m→∞

p(xn, xm) ≤ ε, ∀n ≥M,
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which means that

lim
n→∞

p(xn, u) = 0. (3.16)

By means of (3.1), (3.16), (ϕ,ψ) ∈ Φ1 × Φ3 and Lemma 2.3, we infer that

0 ≤
∫ p(fxn,fu)

0

ϕ(t)dt ≤
∫ p(xn,u)

0

ϕ(t)dt− ψ(p(xn, u))→ 0 as n→∞,

that is,

lim
n→∞

∫ p(fxn,fu)

0

ϕ(t)dt = 0,

which together with Lemma 2.4 gives that

lim
n→∞

p(fxn, fu) = lim
n→∞

p(xn+1, fu) = 0,

In light of (p1) and (3.8), we conclude that

0 ≤ p(xn, fu) ≤ p(xn, xn+1) + p(xn+1, fu)→ 0 as n→∞,
that is,

lim
n→∞

p(xn, fu) = 0. (3.17)

Combining (3.16) and (3.17) and using Lemma 2.2, we have u = fu.
Secondly we show that p(u, u) = 0. Suppose that p(u, u) > 0. In view of (3.1)

and (ϕ,ψ) ∈ Φ1 × Φ3, we deduce that

0 <

∫ p(u,u)

0

ϕ(t)dt =

∫ p(fu,fu)

0

ϕ(t)dt

≤
∫ p(u,u)

0

ϕ(t)dt− ψ(p(u, u)) <

∫ p(u,u)

0

ϕ(t)dt,

(3.18)

which is a contradiction. Hence p(u, u) = 0.
Thirdly we show that f has a unique fixed point in X. Suppose that u and

v are two fixed points of f in X. Similar to the proof of (3.18), we conclude
that p(u, u) = p(v, v) = 0. Suppose that p(u, v) > 0. On account of (3.1) and
(ϕ,ψ) ∈ Φ1 × Φ3, we get that

0 <

∫ p(u,v)

0

ϕ(t)dt =

∫ p(fu,fv)

0

ϕ(t)dt

≤
∫ p(u,v)

0

ϕ(t)dt− ψ(p(u, v)) <

∫ p(u,v)

0

ϕ(t)dt,

which is ridiculous. Consequently p(u, v) = 0, which together with p(u, u) = 0
and Lemma 2.2 that u = v. This completes the proof. �

Theorem 3.2. Let (X, d) be a complete metric space and let p be a w-distance
in X. Assume that f : X → X satisfies that∫ p(fx,fy)

0

ϕ(t)dt ≤
∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, y)), ∀x, y ∈ X, (3.19)
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where (ϕ,ψ) ∈ Φ2 × Φ3. Then f has a unique fixed point u ∈ X such that
p(u, u) = 0, limn→∞ p(fnx0, u) = 0 and limn→∞ fnx0 = u for each x0 ∈ X.

Proof. Firstly we show that f has a fixed point u ∈ X. Pick an arbitrary point
x0 in X and put xn = fnx0 for each n ∈ N0. Now we consider two cases as
follows:

Case 1. xn0 = xn0−1 for some n0 ∈ N. It follows that xn0−1 is a fixed point
of f and limn→∞ fnx0 = xn0−1. Suppose that p(xn0−1, xn0−1) > 0. Making use
of (3.19) and (ϕ,ψ) ∈ Φ2 × Φ3, we conclude immediately that∫ p(xn0−1,xn0−1)

0

ϕ(t)dt =

∫ p(fxn0−1,fxn0−1)

0

ϕ(t)dt

≤
∫ p(xn0−1,xn0−1)

0

ϕ(t)dt− ψ(p(fxn0−1, xn0−1))

=

∫ p(xn0−1,xn0−1)

0

ϕ(t)dt− ψ(p(xn0−1, xn0−1)) <

∫ p(xn0−1,xn0−1)

0

ϕ(t)dt,

which is a contradiction. Hence p(xn0−1, xn0−1) = 0, which means that

lim
n→∞

p(fnx0, xn0−1) = p(xn0−1, xn0−1) = 0;

Case 2. xn 6= xn−1 for all n ∈ N. Suppose that (3.2) holds. It follows from
(3.2), (3.19) and (ϕ,ψ) ∈ Φ2 × Φ3 that

0 ≤
∫ p(xn0 ,xn0+1)

0

ϕ(t)dt =

∫ p(fxn0−1,fxn0 )

0

ϕ(t)dt

≤
∫ p(xn0−1,xn0 )

0

ϕ(t)dt− ψ(p(xn0
, xn0

)) ≤ 0,

which yields that ∫ p(xn0
,xn0+1)

0

ϕ(t)dt = 0,

which together with ϕ ∈ Φ2 gives (3.3). Combining (3.2), (3.3) and (p1), we
know that

0 ≤ p(xn0−1, xn0+1) ≤ p(xn0−1, xn0
) + p(xn0

, xn0+1) = 0,

that is, (3.4) holds. By virtue of (3.2), (3.4) and Lemma 2.2, we deduce that
xn0 = xn0+1, which is a contradiction and hence (3.5) holds. Suppose that there
exists q ∈ N with

p(xq, xq+1) > p(xq−1, xq). (3.20)

In light of (3.5), (3.19), (3.20) and (ϕ,ψ) ∈ Φ2 × Φ3, we conclude that

0 <

∫ p(xq−1,xq)

0

ϕ(t)dt <

∫ p(xq,xq+1)

0

ϕ(t)dt =

∫ p(fxq−1,fxq)

0

ϕ(t)dt

≤
∫ p(xq−1,xq)

0

ϕ(t)dt− ψ(p(xq, xq)) ≤
∫ p(xq−1,xq)

0

ϕ(t)dt,
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which is a contradiction. By means of (3.5), we get that

0 < p(xn, xn+1) ≤ p(xn−1, xn), ∀n ∈ N. (3.21)

It follows from (3.21) that the sequence {p(xn, xn+1)}n∈N0 is positive and de-
creasing. Hence there exists a constant v ≥ 0 with (3.7). Suppose that there
exists j ∈ N with

p(xj , xj+2) > p(xj−1, xj+1). (3.22)

In light of (3.19), (3.22) and (ϕ,ψ) ∈ Φ2 × Φ3, we conclude that

0 ≤
∫ p(xj−1,xj+1)

0

ϕ(t)dt <

∫ p(xj ,xj+2)

0

ϕ(t)dt =

∫ p(fxj−1,fxj+1)

0

ϕ(t)dt

≤
∫ p(xj−1,xj+1)

0

ϕ(t)dt− ψ(p(xj , xj+1)) ≤
∫ p(xj−1,xj+1)

0

ϕ(t)dt,

which is a contradiction. Hence

0 ≤ p(xn, xn+2) ≤ p(xn−1, xn+1), ∀n ∈ N. (3.23)

It follows from (3.23) that the sequence {p(xn, xn+2)}n∈N0
is nonnegative and

nonincreasing. Hence there exists a constant b ≥ 0 with

lim
n→∞

p(xn, xn+2) = b. (3.24)

Suppose that v > 0. By virtue of (3.7), (3.19), (3.24), (ϕ,ψ) ∈ Φ2 × Φ3 and
Lemma 2.3, we gain that

0 ≤
∫ b

0

ϕ(t)dt = lim sup
n→∞

∫ p(xn,xn+2)

0

ϕ(t)dt = lim sup
n→∞

∫ p(fxn−1,fxn+1)

0

ϕ(t)dt

≤ lim sup
n→∞

(∫ p(xn−1,xn+1)

0

ϕ(t)dt− ψ(p(xn, xn+1))

)
≤ lim sup

n→∞

∫ p(xn−1,xn+1)

0

ϕ(t)dt− lim inf
n→∞

ψ(p(xn, xn+1))

≤
∫ b

0

ϕ(t)dt− ψ(v) <

∫ b

0

ϕ(t)dt,

which is absurd and hence (3.8) holds. In a similar manner, we find that there
exists a constant c ≥ 0 with

lim
n→∞

p(xn+1, xn) = c. (3.25)

Suppose that c > 0. Put lim supn→∞ p(xn, xn) = w. It follows that there exists
a subsequence {xnk

}k∈N of {xn}n∈N0
satisfying

lim
k→∞

p(xnk
, xnk

) = w. (3.26)
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Using (3.19) and (ϕ,ψ) ∈ Φ2 × Φ3, we deduce that

0 ≤
∫ p(xn,xn+1)

0

ϕ(t)dt =

∫ p(fxn−1,fxn)

0

ϕ(t)dt

≤
∫ p(xn−1,xn)

0

ϕ(t)dt− ψ(p(xn, xn)) ≤
∫ p(xn−1,xn)

0

ϕ(t)dt, ∀n ∈ N.
(3.27)

Letting n→∞ in (3.27) and using (3.8) and Lemma 2.4, we know that

lim
n→∞

(∫ p(xn−1,xn)

0

ϕ(t)dt− ψ(p(xn, xn))

)
= 0,

which gives that

lim
n→∞

ψ(p(xn, xn))

= lim
n→∞

∫ p(xn−1,xn)

0

ϕ(t)dt− lim
n→∞

(∫ p(xn−1,xn)

0

ϕ(t)dt− ψ(p(xn, xn))

)
= 0.

(3.28)

In light of (3.8), (3.19), (3.26)-(3.28), (ϕ,ψ) ∈ Φ2 × Φ3 and Lemma 2.4, we
deduce that

0 = lim sup
k→∞

∫ p(xnk
,xnk+1)

0

ϕ(t)dt = lim sup
k→∞

∫ p(fxnk−1,fxnk
)

0

ϕ(t)dt

≤ lim sup
k→∞

(∫ p(xnk−1,xnk
)

0

ϕ(t)dt− ψ(p(xnk
, xnk

))

)
≤ lim sup

k→∞

∫ p(xnk−1,xnk
)

0

ϕ(t)dt− lim inf
k→∞

ψ(p(xnk
, xnk

)) ≤ 0− ψ(w),

which together with ψ ∈ Φ3 yields that ψ(w) = 0, that is, w = 0. Note that p is
nonnegative. It follows that

lim
n→∞

p(xn, xn) = 0. (3.29)

In view of (3.19), (3.25), (3.29), (ϕ,ψ) ∈ Φ2 × Φ3 and Lemma 2.4, we get that

0 = lim sup
n→∞

∫ p(xn+1,xn+1)

0

ϕ(t)dt = lim sup
n→∞

∫ p(fxn,fxn)

0

ϕ(t)dt

≤ lim sup
n→∞

(∫ p(xn,xn)

0

ϕ(t)dt− ψ(p(xn+1, xn))

)
≤ lim sup

n→∞

∫ p(xn,xn)

0

ϕ(t)dt− lim inf
n→∞

ψ(p(xn+1, xn)) ≤ 0− ψ(c),

which means that ψ(c) ≤ 0. It follows from ψ ∈ Φ3 that ψ(c) = 0 and c = 0.
Now we assert that (3.10) holds. Otherwise there exists a constant ε > 0 such

that for each positive integer k, there are subsequences {m(k)}k∈N, {n(k)}k∈N
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satisfying (3.11)-(3.13). Letting k → ∞ in (3.13) and using (3.8), (3.9) and
(3.12), we know that

lim
k→∞

p(xn(k), xm(k)) = lim
k→∞

p(xn(k)−1, xm(k)−1)

= lim
k→∞

p(xn(k), xm(k)−1) = ε.
(3.30)

In light of (3.19), (3.30), (ϕ,ψ) ∈ Φ2 × Φ3 and Lemma 2.3, we conclude that∫ ε

0

ϕ(t)dt = lim sup
k→∞

∫ p(xn(k),xm(k))

0

ϕ(t)dt = lim sup
k→∞

∫ p(fxn(k)−1,fxm(k)−1)

0

ϕ(t)dt

≤ lim sup
k→∞

(∫ p(xn(k)−1,xm(k)−1)

0

ϕ(t)dt− ψ(p(xn(k), xm(k)−1))

)
≤ lim sup

k→∞

∫ p(xn(k)−1,xm(k)−1)

0

ϕ(t)dt− lim inf
k→∞

ψ(p(xn(k), xm(k)−1))

≤
∫ ε

0

ϕ(t)dt− ψ(ε) <

∫ ε

0

ϕ(t)dt,

which is absurd. Hence (3.10) holds.
Similar to the proof of Theorem 3.1, we deduce that f has a fixed point u ∈ X.
Secondly we show that p(u, u) = 0. Suppose that p(u, u) > 0. In view of

(3.19) and (ϕ,ψ) ∈ Φ2 × Φ3, we deduce that

0 <

∫ p(u,u)

0

ϕ(t)dt =

∫ p(fu,fu)

0

ϕ(t)dt

≤
∫ p(u,u)

0

ϕ(t)dt− ψ(p(fu, u)) <

∫ p(u,u)

0

ϕ(t)dt,

(3.31)

which is a contradiction. Hence p(u, u) = 0.
Thirdly we show that f has a unique fixed point in X. Suppose that u and

v are two fixed points of f in X. Similar to the proof of (3.31), we conclude
that p(u, u) = p(v, v) = 0. Suppose that p(u, v) > 0. On account of (3.19) and
(ϕ,ψ) ∈ Φ2 × Φ3, we get that

0 <

∫ p(u,v)

0

ϕ(t)dt =

∫ p(fu,fv)

0

ϕ(t)dt ≤
∫ p(u,v)

0

ϕ(t)dt− ψ(p(fu, v))

=

∫ p(u,v)

0

ϕ(t)dt− ψ(p(u, v)) <

∫ p(u,v)

0

ϕ(t)dt,

which is impossible. Consequently p(u, v) = 0, which together with p(u, u) = 0
and Lemma 2.2 that u = v. This completes the proof. �

Similar to the proofs of Theorems 3.1 and 3.2, we get the following results
and omit their proofs.
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Theorem 3.3. Let (X, d) be a complete metric space and let p be a w-distance
in X. Assume that f : X → X is an orbitally continuous mapping and satisfies
that ∫ p(fx,fy)

0

ϕ(t)dt ≤
∫ 1

2 [p(x,fx)+p(y,fy)]

0

ϕ(t)dt

− ψ
(

1

2
[p(x, fx) + p(y, fy)]

)
, ∀x, y ∈ X,

(3.32)

where (ϕ,ψ) ∈ Φ2 × Φ3. Then f has a unique fixed point u ∈ X such that
p(u, u) = 0, limn→∞ p(fnx0, u) = 0 and limn→∞ fnx0 = u for each x0 ∈ X.

Theorem 3.4. Let (X, d) be a complete metric space and let p be a w-distance
in X. Assume that f : X → X satisfies that∫ p(fx,fy)

0

ϕ(t)dt ≤
∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, fy)), ∀x, y ∈ X, (3.33)

where (ϕ,ψ) ∈ Φ1 × Φ3. Then f has a unique fixed point u ∈ X such that
p(u, u) = 0, limn→∞ p(fnx0, u) = 0 and limn→∞ fnx0 = u for each x0 ∈ X.

4. Remarks and illustrative examples

In this section, we construct four nontrivial examples to compare the fixed
point theorems obtained in Section 3 with the known results in Section 1.

Remark 4.1. In case p(x, y) = d(x, y) for all x, y ∈ X, then Theorem 3.1
reduces to Theorem 1.3, which extends Theorems 1.1 and 1.2. The following
example proves that Theorem 3.1 generalizes indeed Theorems 1.1-1.3.

Example 4.1. Let X = [0,
√

5] be endowed with the Euclidean metric d = | · |,
p : X ×X → R+, ϕ,ψ : R+ → R+ and f : X → X be defined by

p(x, y) = y, ∀x, y ∈ X, ϕ(t) = 1, ψ(t) =
1

3
t2, ∀t ∈ R+

and

fx =

{
x− 1

2x
2, ∀x ∈ [0, 1),

0, ∀x ∈ [1,
√

5].

It is clear that p is a w-distance in X and (ϕ,ψ) ∈ Φ1 × Φ3. Let x, y ∈ X. In
order to verify (3.1), we have to consider two possible cases as follows:

Case 1. (x, y) ∈ X × [0, 1). It is clear that∫ p(fx,fy)

0

ϕ(t)dt =

∫ y− 1
2y

2

0

1dt = y − 1

2
y2 ≤ y − 1

3
y2

=

∫ y

0

1dt− 1

3
y2 =

∫ p(x,y)

0

ϕ(t)dt− ψ(p(x, y));
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Case 2. (x, y) ∈ X × [1,
√

5]. Note that∫ p(fx,fy)

0

ϕ(t)dt = 0 ≤ y − 1

3
y2 =

∫ p(x,y)

0

ϕ(t)dt− ψ(p(x, y)).

That is, (3.1) holds. Hence the conditions of Theorem 3.1 are satisfied. It follows
from Theorem 3.1 that f has a unique fixed point in X.

However we cannot use Theorem 1.3 to prove the existence of fixed points of
the mapping f in X. Otherwise, there exists (ϕ,ψ) ∈ Φ1 × Φ3 satisfying (1.3).
It follows that

0 <

∫ 1
2

0

ϕ(t)dt = lim sup
y→1−

∫ |0−(y− 1
2y

2)|

0

ϕ(t)dt = lim sup
y→1−

∫ d(f1,fy)

0

ϕ(t)dt

≤ lim sup
y→1−

(∫ d(1,y)

0

ϕ(t)dt− ψ
(
d(1, y)

))
≤ lim sup

y→1−

∫ d(1,y)

0

ϕ(t)dt− lim inf
y→1−

ψ(d(1, y)) ≤ 0− ψ(0) = 0,

which is impossible. It follows from Remarks 2.1 and 2.2 that Theorems 1.1 and
1.2 are useless in proving the existence of fixed points of f .

Remark 4.2. The following example shows that Theorem 3.2 differs from The-
orem 1.3.

Example 4.2. Let X = [0, 3] be endowed with the Euclidean metric d = | · |,
p : X ×X → R+, ϕ,ψ : R+ → R+ and f : X → X be defined by

p(x, y) = x+ y, ∀x, y ∈ X, ϕ(t) = 2t, ψ(t) =
1

4
t2, ∀t ∈ R+

and

fx =

{
x
2 , ∀x ∈ [0, 2],
x
3 , ∀x ∈ (2, 3].

It is clear that p is a w-distance in X and (ϕ,ψ) ∈ Φ2 × Φ3. Let x, y ∈ X. In
order to verify (3.19), we have to consider four possible cases as follows:

Case 1. (x, y) ∈ [0, 2]× [0, 2]. It is clear that∫ p(fx,fy)

0

ϕ(t)dt =

∫ x+y
2

0

2tdt =
(x+ y)2

4
≤ (x+ y)2 − 1

4

(
x

2
+ y

)2

=

∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, y));

Case 2. (x, y) ∈ [0, 2]× (2, 3]. Note that∫ p(fx,fy)

0

ϕ(t)dt =

∫ 3x+2y
6

0

2tdt =

(
3x+ 2y

6

)2

≤ (x+ y)
2 − 1

4

(
x

2
+ y

)2

=

∫ x+y

0

2tdt− ψ
(
x

2
+ y

)
=

∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, y));
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Case 3. (x, y) ∈ (2, 3]× [0, 2]. It follows that

∫ p(fx,fy)

0

ϕ(t)dt =

∫ 2x+3y
6

0

2tdt =

(
2x+ 3y

6

)2

≤ (x+ y)
2 − 1

4

(
x

3
+ y

)2

=

∫ x+y

0

2tdt− ψ
(
x

3
+ y

)
=

∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, y));

Case 4. (x, y) ∈ (2, 3]× (2, 3]. It is easy to verify that

∫ p(fx,fy)

0

ϕ(t)dt =

∫ x+y
3

0

2tdt =

(
x+ y

3

)2

≤ (x+ y)
2 − 1

4

(
x

3
+ y

)2

=

∫ x+y

0

2tdt− ψ
(
x

3
+ y

)
=

∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, y)).

That is, (3.19) holds. Hence the conditions of Theorem 3.2 are satisfied. It
follows from Theorem 3.2 that f has a unique fixed point in X.

However we cannot use Theorem 1.3 to prove the existence of fixed points of
the mapping f in X. Otherwise, there exists (ϕ,ψ) ∈ Φ1 × Φ3 satisfying (1.3).
It follows that

0 <

∫ 1
3

0

ϕ(t)dt = lim sup
y→2+

∫ |1− y
3 |

0

ϕ(t)dt = lim sup
y→2+

∫ d(f2,fy)

0

ϕ(t)dt

≤ lim sup
y→2+

(∫ d(2,y)

0

ϕ(t)dt− ψ
(
d(2, y)

))
≤ lim sup

y→2+

∫ d(2,y)

0

ϕ(t)dt− lim inf
y→2+

ψ(d(2, y)) ≤ 0− ψ(0) = 0,

which is impossible.

Remark 4.3. The example below is an application of Theorem 3.3.

Example 4.3. Let X = R+ be endowed with the Euclidean metric d = | · |,
p : X ×X → R+, ϕ,ψ : R+ → R+ and f : X → X be defined by

p(x, y) = x+ y, ∀x, y ∈ X, ϕ(t) = 4t, ψ(t) =

√
3

8
t2, ∀t ∈ R+

and

fx =

√
3

2
x, ∀x ∈ R+.
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It is easy to see that p is a w-distance in X, (ϕ,ψ) ∈ Φ2 × Φ3 and∫ p(fx,fy)

0

ϕ(t)dt =

∫ √
3

2 (x+y)

0

4tdt =
3

2
(x+ y)2 ≤ 100 + 57

√
3

128
(x+ y)2

=

∫ 1
2 (1+

√
3

2 )(x+y)

0

4tdt− ψ
(

1

2

(
1 +

√
3

2

)
(x+ y)

)
=

∫ 1
2 [p(x,fx)+p(y,fy)]

0

ϕ(t)dt− ψ
(

1

2
[p(x, fx) + p(y, fy)]

)
, ∀x, y ∈ X.

That is, the conditions of Theorem 3.3 are fulfilled. It follows from Theorem 3.3
that f has a unique fixed point in X.

Remark 4.4. In case p(x, y) = d(x, y) for all x, y ∈ X, then Theorem 3.4 reduces
to Theorem 1.4. The following example proves that Theorem 3.4 generalizes
indeed Theorem 1.4.

Example 4.4. Let X = R+ be endowed with the Euclidean metric d = | · |,
p : X ×X → R+, ϕ,ψ : R+ → R+ and f : X → X be defined by

p(x, y) =
√
y, ∀x, y ∈ X, ϕ(t) = t, ψ(t) =

1

4
t2, ∀t ∈ R+

and

fx =

{
0, ∀x ∈ [0, 4],
√
x
4 , ∀x ∈ (4,+∞).

It is clear that p is a w-distance in X and (ϕ,ψ) ∈ Φ1 × Φ3. Let x, y ∈ X. In
order to verify (3.33), we have to consider two possible cases as follows:

Case 1. (x, y) ∈ X × [0, 4]. It is clear that∫ p(fx,fy)

0

ϕ(t)dt = 0 ≤ 1

2
y =

∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, fy));

Case 2. (x, y) ∈ X × (4,+∞). Note that

∫ p(fx,fy)

0

ϕ(t)dt =

∫ 1
2y

1
4

0

tdt =

√
y

8
≤ 1

2
y − 1

8

√
y

=

∫ √y

0

tdt− ψ
(

1

2
y

1
4

)
=

∫ p(x,y)

0

ϕ(t)dt− ψ(p(fx, fy)).

That is, (3.33) holds. Hence the condition of Theorem 3.4 are satisfied. It follows
from Theorem 3.4 that f has a unique fixed point in X.

However we cannot use Theorem 1.4 to prove the existence of fixed points of
the mapping f in X. Otherwise, there exists (ϕ,ψ) ∈ Φ1 × Φ3 satisfying (1.4).
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It follows that

0 <

∫ 1
2

0

ϕ(t)dt = lim sup
y→4+

∫ |0−√y

4 |

0

ϕ(t)dt = lim sup
y→4+

∫ d(f4,fy)

0

ϕ(t)dt

≤ lim sup
y→4+

(∫ d(4,y)

0

ϕ(t)dt− ψ
(
d(f4, fy)

))
≤ lim sup

y→4+

∫ d(4,y)

0

ϕ(t)dt− lim inf
y→4+

ψ

(√
y

4

)
≤ 0− ψ

(
1

2

)
< 0,

which is absurd.
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