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Abstract. In this paper, we introduce δ-fuzzy ideals in a pseudo comple-

mented distributive lattice in terms of fuzzy filters. It is proved that the
set of all δ-fuzzy ideals forms a complete distributive lattice. The set of

equivalent conditions are given for the class of all δ-fuzzy ideals to be a sub-
lattice of the fuzzy ideals of L. Moreover, δ-fuzzy ideals are characterized

in terms of fuzzy congruences.
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1. Introduction

The theory of pseudo-complementation was introduced and extensively stud-
ied in semi-lattices and particularly in distributive lattices by Frink [9] and
Birkhoff [8]. Later, pseudo-complements in Stone algebras have been studied by
several authors like Balbes [7], Frink [9], Grätzer [10], etc. In 2012, Rao [13],
introduced the concept of δ-ideal in a distributive lattice in terms of pseudo-
complementation and filters.

On the other hand, the notion of a fuzzy set initiated by Zadeh in [17].
Rosenfeld [14] has developed the concept of fuzzy subgroups. Since then, several
authors have developed interesting results on fuzzy theory, like ([1],[2],[3],[4],[5],
[6],[11],[14],[15],[16])

In this paper, the concept of δ-fuzzy ideals is introduced in a distributive
lattice in terms of pseudo-complementation and fuzzy filters. Some properties of
these δ-fuzzy ideals are studied and then proved that the set of all δ-fuzzy ideals
can be made into a complete distributive lattice. We derive a set of equivalent
conditions for the class of all δ-fuzzy ideals to become a sublattice to the lattice of
all fuzzy ideals, which leads to a characterization of Stone lattices. We also prove
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that the homomorphic image of a δ-fuzzy ideal is again a δ-fuzzy ideal. Finally,
δ-fuzzy ideal of a pseudo-complemented distributive lattice is characterized in
terms of fuzzy congruences.

2. Preliminaries

We refer to Grätzer [10] for the elementary properties of lattices. An algebra
L = (L;∧,∨, ∗, 0, 1) is of type (2, 2, 1, 0, 0) is a psueo-complemented distributive
lattice, if the following conditions hold:

(1) (L;∧,∨, 0, 1) is a bounded distributive lattice, and
(2) for all a, b ∈ L, a ∧ b = 0⇔ a ∧ b∗ = a.

Remark 2.1. The pseudo-complement a∗ of an element a is the greatest element
disjoint from a, if such an element exists.

A distributive lattice L in which every element has a pseudo-complement is
called a pseudo-complemented lattice.

Theorem 2.1 ([10]). For any two elements a, b of a pseudo-complemented lat-
tice, we have the following:

(1) 0∗∗ = 0,
(2) a ∧ a∗ = 0,
(3) a ≤ b⇒ b∗ ≤ a∗,
(4) a ≤ a∗∗,
(5) a∗∗∗ = a∗,
(6) (a ∨ b)∗ = a∗ ∧ b∗,
(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

An element x of a a pseudo-complemented lattice is called closed, if x = x∗∗.

Definition 2.2 ([7]). A pseudo-complemented distributive lattice L is called a
Stone lattice, if for all x ∈ L, it satisfies the property:

x∗ ∨ x∗∗ = 1.

Definition 2.3 ([13]). Let L be a pseudo-complemented distributive lattice.
Then for any filter F , the set define

δ(F ) = {x ∈ L : x∗ ∈ F}
is an ideal of L.

Definition 2.4 ([13]). Let L be a pseudo-complemented distributive lattice. An
ideal I of L is called a δ-ideal, if I = δ(F ), for some filter F of L.

Definition 2.5 ([17]). Let X be any nonempty set. A mapping µ : X −→ [0, 1]
is called a fuzzy subset of X.

The unit interval [0, 1] together the the operations min and max form a com-
plete distributive lattice. We often write ∧ for minimum or infimum and ∨ for
maximum or supremum. That is, for all α, β ∈ [0, 1] we have, α∧β = min{α, β}
and α ∨ β = max{α, β}.
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The characteristics function of any set A is defined as:

χA(x) =

{
1 , if x ∈ A
0 , if x /∈ A.

Definition 2.6 ([14]). Let µ and θ be fuzzy subsets of a set A. Define the fuzzy
subsets µ ∪ θ and µ ∩ θ of A as follows: for each x ∈ A,

(µ ∪ θ)(x) = µ(x) ∨ θ(x) and (µ ∩ θ)(x) = µ(x) ∧ θ(x).

Then µ∪θ and µ∩θ are called the union and intersection of µ and θ, respectively.

For any collection, {µi : i ∈ I} of fuzzy subsets of X, where I is a nonempty
index set, the least upper bound

⋃
i∈I µi and the greatest lower bound

⋂
i∈I µi

of the µi’s are given by for each x ∈ X,

(
⋃
i∈I µi)(x) =

∨
i∈I µi(x) and (

⋂
i∈I µi)(x) =

∧
i∈I µi(x),

respectively.
For each t ∈ [0, 1], the set

µt = {x ∈ A : µ(x) ≥ t}
is called the level subset of µ at t [17].

Definition 2.7 ([14]). Let f be a function from X into Y ; µ be a fuzzy subset
of X; and θ be a fuzzy subset of Y . The image of µ under f , denoted by f(µ),
is a fuzzy subset of Y defined as follows: for each y ∈ Y ,

f(µ)(y) =

{
Sup{µ(x) : x ∈ f−1(y)} , if f−1(y) 6= φ

0, otherwise
.

The preimage of θ under f , symbolized by f−1(θ), is a fuzzy subset of X defined
as follows: for each x ∈ X,

f−1(θ)(x) = θ(f(x)).

Definition 2.8 ([15]). A fuzzy subset µ of a bounded lattice L is called a fuzzy
ideal of L, if for all x, y ∈ L the following conditions are satisfied:

(1) µ(0) = 1,
(2) µ(x ∨ y) ≥ µ(x) ∧ µ(y),
(3) µ(x ∧ y) ≥ µ(x) ∨ µ(y).

Definition 2.9 ([15]). A fuzzy subset µ of a bounded lattice L is called a fuzzy
filter of L, if for all x, y ∈ L the following conditions are satisfied:

(1) µ(1) = 1,
(2) µ(x ∨ y) ≥ µ(x) ∨ µ(y),
(3) µ(x ∧ y) ≥ µ(x) ∧ µ(y).

We define the binary operations ”+” and ”·” on the set of all fuzzy subsets
of L as:

(µ+ θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∨ z = x} and
(µ · θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∧ z = x}.
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If µ and θ are fuzzy ideals of L, then µ · θ = µ ∧ θ = µ ∩ θ and µ+ θ = µ ∨ θ
is a fuzzy ideal generated by µ ∪ θ.

If µ and θ are fuzzy filters of L, then µ+ θ = µ∧ θ (the pointwise infimum of
µ and θ) and µ · θ = µ ∨ θ (the supremum of µ and θ).

Definition 2.10 ([12]). Let L be a lattice, x ∈ L and α ∈ [0, 1]. Define a fuzzy
subset αx of L as:

αx(y) =

{
1 , if y ≤ x
α , if y � x

is a fuzzy ideal of L.

Remark 2.2 ([12]). αx is called the α-level principal fuzzy ideal corresponding
to x.
Similarly, a fuzzy subset αx of L defined

αx(y) =

{
1 , if x ≤ y
α , if x � y

is the α-level principal fuzzy filter corresponding to x.

Definition 2.11 ([15]). A proper fuzzy ideal µ of L is called prime fuzzy ideal
of L, if for any two fuzzy ideals θ, η of L, θ ∩ η ⊆ µ⇒ θ ⊆ µ or η ⊆ µ.

Definition 2.12 ([15]). A fuzzy subset θ of L×L is said to be a fuzzy congruence
on L, if for any x, y, z ∈ L, the following hold:

(1) θ(x, x) = 1,
(2) θ(x, y) = θ(y, x),
(3) θ(x, y) ∧ θ(y, z) ≤ θ(x, z),
(4) θ(x, y) ≤ θ(x ∨ z, y ∨ z) ∧ θ(x ∧ z, y ∧ z).

Note that a fuzzy subset µ of L is nonempty if there exists x ∈ L such that
µ(x) 6= 0. The set of all fuzzy ideals and fuzzy filters of L are denoted by FI(L)
and FF (L) respectively.

3. δ-Fuzzy Ideals

In this section, we study δ-fuzzy ideals in a pseudo-complemented distributive
lattice and its property. Throughout the rest of this paper L stands for a pseudo-
complemented distributive lattice (L,∨,∧, ∗, 0, 1).

Definition 3.1. For any fuzzy filter µ of L, define the fuzzy subset δ(µ) as
follows:

δ(µ)(x) = µ(x∗) for each x ∈ L.

Lemma 3.2. For any fuzzy filter µ of L, δ(µ) is a fuzzy ideal of L.

Proof. For any fuzzy filter µ of L. Since 0∗ = 1, we get δ(µ)(0) = µ(0∗) = 1.
Let x, y ∈ L. Then δ(µ)(x ∨ y) = µ((x ∨ y)∗) = µ(x∗ ∧ y∗) = µ(x∗) ∧ µ(y∗) =
δ(µ)(x) ∧ δ(µ)(y). Thus δ(µ) is a fuzzy ideal of L. �
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The proof of the following lemma is quite routine and will be omitted.

Lemma 3.3. For any fuzzy filters µ and θ of L, we have the following.

(1) (µ ∩ δ(µ))(x) = µ(0) for each x ∈ L,
(2) δ(µ)(x) = δ(µ)(x∗∗) for each x ∈ L,
(3) µ(x) ≤ δ(µ)(x∗) for each x ∈ L,
(4) µ ⊆ θ ⇒ δ(µ) ⊆ δ(θ),
(5) δ(µ ∩ θ) = δ(µ) ∩ δ(θ).

Lemma 3.4. For any fuzzy filter µ of L, δ(µ) = χL if and only if µ = χL.

Proof. Let δ(µ) = χL. Then for each x ∈ L, δ(µ)(x) = 1. Since 0 = 1∗ ∈ L, we
get µ(0) = µ(1∗) = δ(µ)(1) = 1. Since µ is a fuzzy filter, we have µ(0) ≤ µ(x)
for each x ∈ L. This implies that µ(x) = 1, for each x ∈ L. The converse part
is trivial. �

Definition 3.5. A fuzzy ideal µ of L is a δ-fuzzy ideal, if µ = δ(θ) for some
fuzzy filter θ of L.

Example 3.6. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given below.

Define fuzzy subsets µ and θ of L as follows: µ(0) = 1 = µ(a), µ(b) = µ(c) =
µ(1) = 0 and θ(1) = 1 = θ(c) = θ(b), θ(a) = θ(0) = 0. Then it can be easily
verified that µ and θ are fuzzy ideal and fuzzy filter of L respectively in which
µ = δ(θ). Thus µ is a δ-fuzzy ideal of L.

Every δ-fuzzy ideal is a fuzzy ideal but the converse may not be true. For
this, we have the following example.

Example 3.7. If we define a fuzzy subset η of L given in the above example
as η(0) = 1, η(a) = η(b) = η(c) = 0.5 and η(1) = 0, then η is a fuzzy ideal
but not a δ-fuzzy ideal of L. Now we proceed to show η is not a δ-fuzzy ideal.
Assume that η = δ(λ) for some fuzzy filter λ. Since c∗ = 1∗ = 0, we get
η(1) = δ(λ)(1) = λ(0) = η(c). Which is a contradiction. This shows that we can
not find any fuzzy filter λ of L such that η = δ(λ). Then η is a fuzzy ideal but
not a δ-fuzzy ideal.

Lemma 3.8. If F is a filter of L, then δ(χF ) = χδ(F ).
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Proof. Let x ∈ L. If x∗ ∈ F , then x ∈ δ(F ) and δ(χF )(x) = 1 = χδ(F )(x). If
x∗ /∈ F , then x /∈ δ(F ) and δ(χF )(x) = 0 = χδ(F )(x). Thus δ(χF ) = χδ(F ). �

Corollary 3.9. For any nonempty subset I of L. I is a δ-ideal of L if and only
if χI is a δ-fuzzy ideal of L.

Proof. Let I be a δ-ideal of L. Then there is a filter F of L such that I = δ(F ).
Thus by the above lemma, we have χI = δ(χF ). So χI is a δ-fuzzy ideal of L.
Conversely, suppose χI is a δ-fuzzy ideal of L. Then there is a fuzzy filter θ of
L such that χI = δ(θ). Since θ is a fuzzy filter of L, every level subset of θ is a
filter of L. To show I is a δ-ideal, it is enough to show that I = δ(θ1). Now, let
x ∈ I. Then χI(x) = 1 and x∗ ∈ θ1. Thus x ∈ δ(θ1). Again, let x ∈ δ(θ1). Then
x∗ ∈ θ1 and δ(θ)(x) = 1 = χI(x). Thus x ∈ I. So I is a δ-ideal of L. �

Lemma 3.10. For each x ∈ L, αx∗ is a δ-fuzzy ideal of L, α ∈ [0, 1].

Proof. For any x ∈ L, αx∗ is a fuzzy ideal of L. To prove αx∗ is a δ-fuzzy ideal of
L, it is enough to show that αx∗ = δ(αx). Let a ∈ L. If a ≤ x∗, then αx∗(a) = 1
and x ≤ a∗. Which implies δ(αx)(a) = 1. If a � x∗, then αx∗(a) = α and
x � a∗. Thus δ(αx)(a) = α. So αx∗ = δ(αx). Hence αx∗ is a δ-fuzzy ideal. �

Let us recall a dense element of a pseudo-complemented distributive lattice.
An element x of a pseudo-complemented lattice is called dense if x∗ = 0. The
set D of all dense elements of L is a filter of L.

Lemma 3.11. Let µ be a proper δ-fuzzy ideal. Then µ(x) = µ(1) for each
x ∈ D.

Proof. Let µ be a proper δ-fuzzy ideal. Then there is a proper fuzzy filter θ of L
such that µ = δ(θ). Since 1 ∈ D, we get µ(1) = θ(0). Let x ∈ D. Then x∗ = 0
and µ(x) = δ(θ)(x) = θ(x∗) = θ(0) = µ(1). �

Let us denote the set of all δ-fuzzy ideals of L by FIδ(L). Then by Example
3.6, we can easily verified that FIδ(L) is not a sublattice of the class FI(L) of
all fuzzy ideals of L. If we define the fuzzy subsets θ and λ of L as follows:

θ(b) = θ(c) = θ(1) = 1, θ(a) = θ(0) = 0 and
λ(a) = λ(c) = λ(1) = 1, λ(b) = λ(0) = 0.

Then clearly θ and λ are fuzzy filters of L. But δ(θ)∨ δ(λ) is not a δ-fuzzy ideal
of L. We thus have the following theorem.

Theorem 3.12. The set FIδ(L) forms a complete distributive lattice with re-
spect to inclusion ordering of fuzzy sets.

Proof. Clearly (FIδ(L),⊆) is a partially ordered set. For any two fuzzy filters
µ, θ of L, define the binary operations ∩ and ∨ as follows:

δ(µ) ∩ δ(θ) = δ(µ ∩ θ) and δ(µ)∨δ(θ) = δ(µ ∨ θ).



δ-Fuzzy ideals in pseudo-complemented distributive lattices 389

It is clear that δ(µ∩θ) is the infimum of δ(µ) and δ(θ) in FIδ(L). Also δ(µ)∨δ(θ)
is a δ-fuzzy ideal of L. Now we prove δ(µ)∨δ(θ) is the supremum of {δ(µ), δ(θ)}
in FIδ(L). Since µ ⊆ µ ∨ θ and θ ⊆ µ ∨ θ, we get δ(µ) ⊆ δ(µ ∨ θ) and
δ(θ) ⊆ δ(µ ∨ θ). This implies that δ(µ ∨ θ) is an upper bound of {δ(µ), δ(θ)}.
Let η be any δ-fuzzy ideal containing δ(µ) and δ(θ). Then there exists a fuzzy
filter λ such that η = δ(λ) and δ(µ) ⊆ δ(λ), δ(θ) ⊆ δ(λ). Now we proceed to
show δ(µ ∨ θ) ⊆ δ(λ). For any x ∈ L, we have

δ(µ ∨ θ)(x) = (µ ∨ θ)(x∗)
= Sup{µ(a) ∧ θ(b) : a ∧ b = x∗}
≤ Sup{µ(a∗∗) ∧ θ(b∗∗) : a ∧ b = x∗}
≤ Sup{λ(a∗∗) ∧ λ(b∗∗) : a∗∗ ∧ b∗∗ = x∗}
≤ Sup{λ(y) ∧ λ(z) : y ∧ z = x∗}
= λ(x∗)

= δ(λ)(x).

Thus δ(µ)∨δ(θ) is the supremum of {δ(µ), δ(θ)} in FIδ(L). So (FIδ(L),∩,∨)
is a lattice. Now we prove the distributivity. For any δ(µ), δ(θ), δ(η) ∈ FIδ(L),

δ(µ)∨(δ(θ) ∩ δ(η)) = δ(µ ∨ (θ ∩ η))

= δ(µ ∨ θ) ∩ δ(µ ∨ η)

= (δ(µ)∨δ(θ)) ∩ (δ(µ)∨δ(η)).

Then FIδ(L) is a distributive lattice. Next, we prove the completeness. Since
{0} and L are δ-ideals, χ{0} and χL are least and greatest elements of FIδ(L).

Let {δ(µi) : i ∈ I} be a subfamily of FIδ(L). Then
⋂
i∈I δ(µi) is a fuzzy ideal

of L. Now,

(
⋂
i∈I

δ(µi))(x) = Inf{µi(x∗) : i ∈ I}

= (
⋂
i∈I

µi)(x
∗)

= δ(
⋂
i∈I

µi)(x).

This shows that (
⋂
i∈I δ(µi)) ∈ FIδ(L). Thus (FIδ(L),∩,∨) is a complete

distributive lattice. �

Lemma 3.13. Every proper δ-fuzzy ideal is contained in a minimal prime fuzzy
ideal.

Proof. Let µ be a proper δ-fuzzy ideal of L. Then µ = δ(θ) for some proper
fuzzy filter θ of L. Since D is a filter of L, we have χD is a fuzzy filter and
µ∩χD ≤ α, where α = µ(1). By corollary 1.6 [15], there exists a minimal prime
fuzzy ideal η of L such that µ ⊆ η and η ∩ χD ≤ α. �
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In the following theorem, we established set of equivalent conditions for the
class of δ-fuzzy ideals to be a sublattice of the set of fuzzy ideals. We also
characterize Stone lattices in terms of δ-fuzzy ideals.

Theorem 3.14. In L the following conditions are equivalent:

(1) L is a Stone lattice,
(2) For any x, y ∈ L, (x ∧ y)∗ = x∗ ∨ y∗,
(3) For any two fuzzy filters µ, θ of L, δ(µ) ∨ δ(θ) = δ(µ ∨ θ),
(4) FIδ(L) is a sublattice of FI(L).

Proof. The proof of 1 ⇒ 2 and 3 ⇒ 4 is straightforward. Now we proceed to
prove the following.

(2 ⇒ 3): Assume the condition (2). Let µ and θ be fuzzy filters of L. We
have always δ(µ) ∨ δ(θ) ⊆ δ(µ ∨ θ). We know that δ(µ) ∨ δ(θ) is the smallest
fuzzy ideal containing δ(µ) and δ(θ). To prove our claim, it is enough to show
δ(µ∨ θ) is the smallest fuzzy ideal containing δ(µ) and δ(θ). Let λ be any fuzzy
ideal containing δ(µ) and δ(θ). Now, we proceed to show δ(µ ∨ θ) ⊆ λ. For any
x ∈ L, we have

δ(µ ∨ θ)(x) = (µ ∨ θ)(x∗)
= Sup{µ(a) ∧ θ(b) : a ∧ b = x∗}
≤ Sup{µ(a∗∗) ∧ θ(b∗∗) : a ∧ b = x∗}
= Sup{δ(µ)(a∗) ∧ δ(θ)(b∗) : a ∧ b = x∗}
≤ Sup{λ(a∗) ∧ λ(b∗) : a ∧ b = x∗}
≤ Sup{λ(a∗) ∧ λ(b∗) : a∗ ∨ b∗ = x∗∗}
≤ Sup{λ(y) ∧ λ(z) : y ∨ z = x∗∗}
= λ(x∗∗)

≤ λ(x).

Thus δ(µ∨θ) is the smallest fuzzy ideal containing δ(µ) and δ(θ). So δ(µ)∨δ(θ) =
δ(µ ∨ θ).

(4⇒ 1): Assume that FIδ(L) is a sublattice of FI(L). Let α ∈ [0, 1). Then by
Lemma 3.10, αx∗ and αx∗∗ are both δ-fuzzy ideals of L. Suppose that x∗∨x∗∗ 6=
1. Then αx∗ ∨ αx∗∗ is a proper δ-fuzzy ideal of L. Hence there exists a minimal
prime fuzzy ideal θ such that αx∗∨αx∗∗ ⊆ θ and θ∩χD ≤ α. Now we need to find
(θ∩χD)(x∗∨x∗∗). Now (αx∗ ∨αx∗∗)(x∗∨x∗∗) ≥ αx∗(x∗)∧αx∗∗(x∗∗) = 1. Since
αx∗ ∨ αx∗∗ ⊆ θ, we get that θ(x∗ ∨ x∗∗) = 1. We know that x∗ ∨ x∗∗ is a dense
element, so we have χD(x∗ ∨x∗∗) = 1. This implies that (θ∩χD)(x∗ ∨x∗∗) = 1.
This is a contradiction. Thus x∗ ∨ x∗∗ = 1 for each x ∈ L. So L is a Stone
lattice. �

Theorem 3.15. In L the following conditions are equivalent:

(1) L is a Boolean algebra,
(2) Every α-level principal fuzzy ideal is a δ-fuzzy ideal,
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(3) For any fuzzy ideal µ of L, µ(x) = µ(x∗∗) for all x ∈ L,
(4) D is a singleton set.

Proof. (1⇒ 2): Suppose that L is a Boolean algebra. Then every element of L
is closed. This implies αx = αx∗∗ for all x ∈ L. By lemma (3.10), αx∗∗ = δ(αx

∗
).

Thus every α-level principal fuzzy ideal is a δ-fuzzy ideal.
(2 ⇒ 3): Assume that every α-level principal fuzzy ideal is a δ-fuzzy ideal.

Let µ be any fuzzy ideal of L. Since x ≤ x∗∗, we get µ(x∗∗) ≤ µ(x). For each
x ∈ L, αx is a δ-fuzzy ideal of L. Then there exists a fuzzy filter θ of L such that
αx = δ(θ) and αx(x) = αx(x∗∗). This shows that x∗∗ ≤ x and µ(x) ≤ µ(x∗∗).
Hence µ(x) = µ(x∗∗) for all x ∈ L.

(3 ⇒ 4): Suppose that condition 3 is true. For each x ∈ L, x ≤ x∗∗. Now
we proceed to show x∗∗ ≤ x. For each x ∈ L, αx is a fuzzy ideal of L. By the
assumption, we have αx(x) = αx(x∗∗). This implies x∗∗ ≤ x. This shows that
x = x∗∗ for all x ∈ L. Thus every element of L is a closed element. Assume that
D is not a singleton set. Then there exists an element x ∈ D such that x 6= 1.
This implies x∗ = 0 and x∗∗ = 1. Since every element is closed, we get x = 1.
This is a contradiction. Thus D is a singleton set.

(4⇒ 1): Suppose that D = {d}. For any x ∈ L, x∨x∗ ∈ D. Then x∧x∗ = 0
and x∨x∗ = d. This implies 0 ≤ x ≤ x∨x∗ = d for all x ∈ L. This shows that L
is a bounded distributive lattice in which each elements is complemented. Thus
L is a Boolean algebra. �

We now characterize δ-fuzzy ideal in terms of fuzzy congruence relations.

Theorem 3.16. For any fuzzy filter µ of L, define a fuzzy relation θ(µ) as:

θ(µ)(x, y) = Sup{µ(a) : x ∧ a = y ∧ a, a ∈ L} for each x, y ∈ L.

Then θ(µ) is a fuzzy congruence relation on L.

Proof. Let µ be a fuzzy filter of L. We prove that θ(µ) is a fuzzy congruence on
L. For any x, y ∈ L, clearly θ(µ)(x, x) = 1 and θ(µ)(x, y) = θ(µ)(y, x).

(1) If x∧a = z∧a and z∧b = y∧b, then we get that x∧ (a∧b) = y∧ (a∧b).
Thus

θ(µ)(x, z) ∧ θ(µ)(z, y) = Sup{µ(a) : x ∧ a = z ∧ a, a ∈ L}
∧ Sup{µ(b) : z ∧ b = y ∧ b, b ∈ L}

= Sup{µ(a) ∧ µ(b) : x ∧ a = z ∧ a, z ∧ b = y ∧ b}
≤ Sup{µ(a ∧ b) : x ∧ (a ∧ b) = y ∧ (a ∧ b)}
≤ Sup{µ(c) : x ∧ c = y ∧ c, a ∈ L}
= θ(µ)(x, y).

(2) For all x1, x2, y1, y2 ∈ L,

θ(µ)(x1, y1) ∧ θ(µ)(x2, y2)

= Sup{µ(a) : x1 ∧ a = y1 ∧ a, a ∈ L}
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∧ Sup{µ(b) : x2 ∧ b = y2 ∧ b, b ∈ L}
= Sup{µ(a) ∧ µ(b) : x1 ∧ a = y1 ∧ a, x2 ∧ b = y2 ∧ b}
≤ Sup{µ(a ∧ b) : (x1 ∧ x2) ∧ (a ∧ b) = (y1 ∧ y2) ∧ (a ∧ b)}
≤ Sup{µ(c) : (x1 ∧ x2) ∧ c = (y1 ∧ y2) ∧ c}
= θ(µ)(x1 ∧ x2, y1 ∧ y2).

(3) If x1 ∧ a = y1 ∧ a and x2 ∧ b = y2 ∧ b, then (x1 ∧ a) ∨ (x2 ∧ b) =
(y1 ∧ a) ∨ (y2 ∧ b). Thus

(x1 ∨ x2) ∧ ((a ∨ x2) ∧ (x1 ∨ b) ∧ (a ∨ b))
= (y1 ∨ y2) ∧ ((a ∨ y2) ∧ (y1 ∨ b) ∧ (a ∨ b)).

Since x1∧a = y1∧a and x2∧b = y2∧b, we have (x1∨b)∧(x2∨a)∧(a∨b) =
(y1 ∨ b) ∧ (y2 ∨ a) ∧ (a ∨ b). Since µ is a fuzzy filter of L,

µ((x1 ∨ b) ∧ (x2 ∨ a) ∧ (a ∨ b)) = µ(x1 ∨ b) ∧ µ(x2 ∨ a) ∧ µ(a ∨ b)
≥ µ(a) ∧ µ(b).

Then

θ(µ)(x1, y1) ∧ θ(µ)(x2, y2)

= Sup{µ(a) : x1 ∧ a = y1 ∧ a, a ∈ L} ∧ Sup{µ(b) : x2 ∧ b = y2 ∧ b, b ∈ L}
= Sup{µ(a) ∧ µ(b) : x1 ∧ a = y1 ∧ a, x2 ∧ b = y2 ∧ b}
= Sup{µ(a ∧ b) : x1 ∧ a = y1 ∧ a, x2 ∧ b = y2 ∧ b}
≤ Sup{µ((x1 ∨ b) ∧ (x2 ∨ a) ∧ (a ∨ b)) : (x1 ∨ x2)

∧((x1 ∨ b) ∧ (x2 ∨ a) ∧ (a ∨ b)) = (y1 ∨ y2) ∧ ((y1 ∨ b) ∧ (y2 ∨ a) ∧ (a ∨ b))}
≤ Sup{µ(c) : (x1 ∨ x2) ∧ c = (y1 ∨ y1) ∧ c, c ∈ L}
= θ(µ)(x1 ∨ x2, y1 ∨ y2).

Thus θ(µ) is a fuzzy congruence on L. �

Theorem 3.17. For any fuzzy ideal µ of L, the fuzzy subset ηµ of L defined as:

ηµ(x) = Sup{µ(a) : x∗ ∧ a∗ = 0, a ∈ L}
is a fuzzy filter of L.

Proof. Let µ be a fuzzy ideal of L. Since 1∗ = 0, we get that 1∗ ∧ a∗ = 0 for all
a ∈ L. Thus ηµ(1) ≥ µ(0) = 1. So ηµ(1) = 1. For any x, y ∈ L,

ηµ(x) ∧ ηµ(y)

= Sup{µ(a) : x∗ ∧ a∗ = 0, a ∈ L} ∧ Sup{µ(b) : y∗ ∧ b∗ = 0, b ∈ L}
= Sup{µ(a) ∧ µ(b) : x∗ ∧ a∗ = 0, y∗ ∧ b∗ = 0}
= Sup{µ(a ∨ b) : x∗ ∧ a∗ = 0, y∗ ∧ b∗ = 0}.

Since x∗ ∧ a∗ = 0 and y∗ ∧ b∗ = 0, we get that x∗∗ ∧ a∗ = a∗ and y∗∗ ∧ b∗ = b∗.
This shows that (x∧y)∗∗∧(a∨b)∗ = (a∨b)∗. Since L is a pseudo-complemented
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lattice, we get (x ∧ y)∗ ∧ (a ∨ b)∗ = 0. Using this fact, we have

ηµ(x) ∧ ηµ(y) ≤ Sup{µ(a ∨ b) : (x ∧ y)∗ ∧ (a ∨ b)∗ = 0}
≤ Sup{µ(c) : (x ∧ y)∗ ∧ c∗ = 0}
= ηµ(x ∧ y).

Thus ηµ(x ∧ y) ≥ ηµ(x) ∧ ηµ(y). On the other hand,

ηµ(x) = Sup{µ(a) : x∗ ∧ a∗ = 0, a ∈ L}
≤ Sup{µ(a) : (x ∨ y)∗ ∧ a∗ = 0, a ∈ L}
= ηµ(x ∨ y).

Similarly, ηµ(x ∨ y) ≥ ηµ(y). So ηµ(x ∨ y) ≥ ηµ(x) ∨ ηµ(y). Hence ηµ is a fuzzy
filter of L. �

Let θ be a fuzzy congruence on L and x ∈ L the fuzzy subset θx of L is defined
by

θx(y) = θ(x, y) for all y ∈ L
is called a fuzzy congruence class of L determined by θ and x. In [16], B. Yuan
and W. Wu observed that, the fuzzy congruence class θ0 of L determined by 0
is a fuzzy ideal of L. In the following theorem, we characterize δ-fuzzy ideal in
terms of fuzzy congruence.

Theorem 3.18. For any fuzzy ideal µ of L, the following conditions are equiv-
alent:

(1) µ is a δ-fuzzy ideal,
(2) µ = θ0(ηµ),
(3) µ = θ0(η) for some fuzzy filter η of L.

Proof. The proof of 2⇒ 3 is straightforward. Now we prove the following.
(1⇒ 2): Assume that µ is a δ-fuzzy ideal of L. Then µ = δ(η) for some fuzzy

filter η of L. For any x ∈ L,

θ0(ηµ)(x) = θ(ηµ)(x, 0)

= Sup{ηµ(a) : x ∧ a = 0, a ∈ L}
≥ ηµ(x∗)

= Sup{µ(b) : x∗∗ ∧ b∗ = 0, b ∈ L}
≥ µ(x).

Conversely, let x ∈ L. Then

θ0(ηµ)(x) = Sup{ηµ(a) : x ∧ a = 0, a ∈ L}
= Sup{Sup{µ(b) : a∗ ∧ b∗ = 0, b ∈ L} : x ∧ a = 0}.

Now we need to show µ(x) ≥ ηµ(a) for each a ∈ L such that x ∧ a = 0. Fix
an element b in L satisfying x ∧ a = 0 and a∗ ∧ b∗ = 0. Then x ≤ a∗ and
a∗ ≤ b∗∗. This implies b∗ ≤ x∗. Since µ = δ(η) and η is a fuzzy filter, we have
µ(x) = η(x∗) ≥ η(b∗) = µ(b). Thus µ(x) ≥ µ(b) and
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µ(x) ≥ Sup{µ(b) : a∗ ∧ b∗ = 0, b ∈ L} = ηµ(a).

This shows that µ(x) ≥ ηµ(a) for each a ∈ L such that x ∧ a = 0. So µ(x) ≥
θ0(ηµ)(x). So µ = θ0(ηµ).

(3⇒ 1): Assume that µ = θ0(η) for some fuzzy filter η of L. For any x ∈ L,

µ(x) = Sup{η(a) : x ∧ a = 0} ≥ η(x∗) = δ(η)(x).

Thus δ(η) ⊆ µ.
Conversely, let x, a ∈ L such that x ∧ a = 0. Then a ≤ x∗. Since η is a fuzzy

filter, we get η(a) ≤ η(x∗). This implies δ(η)(x) ≥ η(a) for each a ∈ L such that
x∧a = 0. This shows that δ(η)(x) is an upper bound of {η(a) : x∧a = 0}. Thus
δ(η)(x) ≥ θ0(η)(x) = µ(x) for each x ∈ L. So µ ⊆ δ(η). Hence µ is a δ-fuzzy
ideal of L. �

4. δ-Fuzzy Ideals and Homomorphism

In this section, some properties of the homomorphic images and the inverse
images of δ-fuzzy ideals are studied.

Throughout this section L and L
′

denote distributive pseudo-complemented
lattices with least elements 0 and 0

′
respectively and f : L −→ L

′
denotes an

onto homomorphism and Kerf = {0}.
In [13], M. S. Rao obsered that, for any two pseudo-complemented distributive

lattices L and L
′

with pseudo-complementation ∗. If f : L −→ L
′

an onto
homomorphism and Kerf = {0}. Then f(x∗) = (f(x))∗ for all x ∈ L. In the
following theorem we prove that the homomorphic image of a δ-fuzzy ideal is
again a δ-fuzzy ideal.

Theorem 4.1. Let µ be a δ-fuzzy ideal of L. Then f(µ) is a δ fuzzy ideal of L
′
.

Proof. Let µ be a δ-fuzzy ideal of L. Then µ = δ(θ), for some fuzzy filter θ of
L. Since µ is a fuzzy ideal and θ is a fuzzy filter, f(µ) and f(θ) are fuzzy ideal

and fuzzy filter, respectively. Now we prove f(δ(θ)) = δ(f(θ)). For any y ∈ L′ ,
f(δ(θ))(y) = Sup{δ(θ)(a) : a ∈ L, a ∈ f−1(y)}

= Sup{θ(a∗) : a ∈ f−1(y)}.
Since f(a∗) = (f(a))∗ and f(a) = y, we get f(a∗) = y∗. This implies a∗ ∈
f−1(y∗). Based on this fact we have the following,

f(δ(θ))(y) ≤ Sup{θ(b) : b ∈ f−1(y∗)}
= f(θ)(y∗)

= δ(f(θ))(y).

Thus f(δ(θ)) ⊆ δ(f(θ)).

Conversely, for any y ∈ L′ ,
δ(f(θ))(y) = f(θ)(y∗)

= Sup{θ(a) : a ∈ L, a ∈ f−1(y∗)}
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≤ Sup{θ(a∗∗) : a ∈ f−1(y∗)}
= Sup{δ(θ)(a∗) : a ∈ f−1(y∗)}.

Since f(a) = y∗, we get a∗ ∈ f−1(y∗∗). Using this fact, we have the following

δ(f(θ))(y) ≤ Sup{δ(θ)(b) : b ∈ L, b ∈ f−1(y∗∗)}
= f(δ(θ))(y∗∗)

≤ f(δ(θ))(y).

Thus δ(f(θ)) ⊆ f(δ(θ)). So δ(f(θ)) = f(δ(θ)). Hence the homomorphic image
of a δ-fuzzy ideal is a δ-fuzzy ideal. �

Corollary 4.2. For any x ∈ L, f(αx∗) = δ(f(αx)).

Lemma 4.3. If µ is a δ-fuzzy ideal of L
′
, then f−1(µ) is a δ fuzzy ideal of L.

Proof. Let µ be a δ-fuzzy ideal of L
′
. Then there is a fuzzy filter θ of L

′
such

that µ = δ(θ). Since θ is a fuzzy filter of L, f−1(θ) is a fuzzy filter of L. Now for
any x ∈ L, f−1(δ(θ))(x) = δ(θ)(f(x)) = θ(f(x∗) = f−1(θ)(x∗) = δ(f−1(θ))(x).
Thus f−1(µ) is a δ-fuzzy ideal of L. �

Theorem 4.4. The class FIδ(L) of δ-fuzzy ideals of L is homomorphic to the

class FIδ(L
′
) of δ-fuzzy ideals of L

′
.

Proof. Define g : FIδ(L) −→ FIδ(L
′
) by g(µ) = δ(f(θ)), where µ = δ(θ) for

some fuzzy filter θ of L. It can be easily verified that g(χ{0}) = χ{0′} and

g(χL) = χM . Let η, λ ∈ FIδ(L). Then there are fuzzy filters µ and θ of L
such that η = δ(µ) and λ = δ(θ). Thus η ∩ λ = δ(µ ∩ θ) and η∨λ = δ(µ ∨ θ)
are δ-fuzzy ideals. So δ(f(µ∩ θ)) and δ(f(µ∨ θ)) are δ-fuzzy ideals of L

′
. Since

µ∩θ ⊆ µ and µ∩θ ⊆ θ, we have δ(f(µ∩θ)) ⊆ δ(f(θ))∩δ(f(µ)). For any y ∈ L′ ,

(δ(f(µ)) ∩ δ(f(θ)))(y) = Sup{µ(a) : a ∈ f−1(y∗), a ∈ L}
∧ Sup{θ(b) : b ∈ f−1(y∗), b ∈ L}

Since f is a homomorphism and f(a) = y∗, f(b) = y∗, we get f(a ∨ b) = y∗.
Using this fact, we have

(δ(f(µ)) ∩ δ(f(θ)))(y) ≤ Sup{µ(a ∨ b) : a ∨ b ∈ f−1(y∗)}
∧ Sup{θ(a ∨ b) : a ∨ b ∈ f−1(y∗)}

= Sup{µ(a ∨ b) ∧ θ(a ∨ b) : a ∨ b ∈ f−1(y∗)}
= Sup{(µ ∩ θ)(a ∨ b) : a ∨ b ∈ f−1(y∗)}
≤ Sup{(µ ∩ θ)(c) : c ∈ f−1(y∗)}
= f(µ ∩ θ)(y∗)
= δ(f(µ ∩ θ))(y)

Hence δ(f(µ)) ∩ δ(f(θ)) = δ(f(µ ∩ θ)). Therefore g(η ∩ λ) = g(η) ∩ g(λ).
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On the other hand, g(η∨λ) = g(δ(µ)∨δ(θ)) = g(δ(µ ∨ θ)) = δ(f(µ ∨ θ)).
Since f is an onto homomorphism, we have f(µ ∨ θ) = f(µ) ∨ f(θ). Then
δ(f(µ ∨ θ)) = δ(f(µ) ∨ f(θ)). Thus

g(η∨λ) = δ(f(µ) ∨ f(θ))

= δ(f(µ))∨δ(f(θ))

= g(η)∨g(λ).

So g(η∨λ) = g(η)∨g(λ). Hence g is a homomorphism. �
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