DOI QR코드

DOI QR Code

Heavy metal profiles of agricultural soils in Sakarya, Turkey

  • Isleyen, Mehmet (Department of Environmental Engineering, Bursa Technical University) ;
  • Akpinar, Aysegul (Biotechnology Application and Research Center, Bilecik Seyh Edebali University) ;
  • Eren, Beytullah (Department of Environmental Engineering, Sakarya University) ;
  • Ok, Gulsun (Department of Environmental Engineering, Sakarya University)
  • 투고 : 2018.08.06
  • 심사 : 2018.10.11
  • 발행 : 2019.09.30

초록

Sakarya is famous for cucurbit productions in Turkey and cucurbits can grow as big as 560 kg of weight per fruit in its agricultural areas. There is no or limited information about contaminant levels and profiles of the agricultural fields in Sakarya. The purpose of this study is to investigate the levels of polycyclic aromatic hydrocarbons (PAHs) (naphthalene, phenanthrene, pyrene, and fluoranthene) and heavy metal (As, Cd, Cu, Cr, Ni, Pb, Zn) concentrations of the selected fields. Total 33 soil samples were collected from 12 counties of Sakarya where both cucurbits have been produced and organochlorine pesticides have been applied to the fields for more than 30 y during the historical plantation periods. Heavy metal and PAH contents in the soil samples were measured by an Inductively Coupled Plasma Emission Spectroscopy and a Gas Chromatography-Mass Spectrometry. The highest phenanthrene, pyrene, and fluoranthene concentrations were measured as 63.50 ng/g, 134.34 ng/g, 140.0 ng/g, respectively in the soil samples from Geyve County. Cu, Ni, and Cr concentrations were measured as 108.2 mg/kg, 219.9 mg/kg, and 173.1 mg/kg, respectively in Geyve's samples which were also the highest and 2-7 times more than the limit values given in the Turkish Soil Pollution Control Regulation. Precautions need to be taken for Sakarya's agricultural fields which are an important milestone of Turkey's cucurbit and fruit productions since the contaminants can be accumulated in the fruits and edible parts of the plants.

키워드

참고문헌

  1. Lim LH, Harrison RM, Harrad S. The contribution of traffic to atmospheric concentrations of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 1999;33:3538-3542. https://doi.org/10.1021/es990392d
  2. Neff JM. Polycyclic aromatic hydrocarbons in the aquatic environment: Sources, fates, and biological effects: Applied Science Publishers; 1979. p. 262.
  3. Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001;60:193-207. https://doi.org/10.1016/S0013-7952(00)00101-0
  4. Kelly BC, Gobas FAPC. Bioaccumulation of persistent organic pollutants in lichen-caribou-wolf food chains of Canada's Central and Western Arctic. Environ. Sci. Technol. 2001;35:325-334. https://doi.org/10.1021/es0011966
  5. Saleh TA. Advanced nanomaterials for water engineering, treatment, and hydraulics. Hershey, PA: IGI Global; 2017.
  6. Saleh TA. Nanomaterial and polymer membranes: Synthesis, characterization, and applications. Waltham, MA: Elsevier; 2016.
  7. Saleh TA. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environ. Sci. Pollut. R. 2015;22:16721-16731. https://doi.org/10.1007/s11356-015-4866-z
  8. Saleh TA. Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): From surface properties to sorption mechanism. Desalin. Water Treat. 2016;57:10730-10744. https://doi.org/10.1080/19443994.2015.1036784
  9. Saleh TA. Mercury sorption by silica/carbon nanotubes and silica/activated carbon: A comparison study. J. Water Supply Res. Technol. 2015;64:892-903. https://doi.org/10.2166/aqua.2015.050
  10. Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling - An overview. RSC Adv. 2012;2:6380-6388. https://doi.org/10.1039/c2ra20340e
  11. Saleh TA. Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. J. Clean. Prod. 2018;172:2123-2132. https://doi.org/10.1016/j.jclepro.2017.11.208
  12. Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv. Colloid Interface Sci. 2014;211:93-101. https://doi.org/10.1016/j.cis.2014.06.006
  13. Holma-Suutari A, Ruokojarvi P, Laaksonen S, et al. Persistent organic pollutant levels in semi-domesticated reindeer (Rangifer tarandus tarandus L.), feed, lichen, blood, milk, placenta, foetus and calf. Sci. Total Environ. 2014;476:125-135. https://doi.org/10.1016/j.scitotenv.2013.12.109
  14. Bishop CA, Rouse JD. Chlorinated hydrocarbon concentrations in plasma of the Lake Erie water snake (Nerodia sipedon insularum) and northern water snake (Nerodia sipedon sipedon) from the Great Lakes basin in 1998. Arch. Environ. Contam. Toxicol. 2000;39:500-505. https://doi.org/10.1007/s002440010133
  15. Kaupp H, Blumenstock M, McLachlan MS. Retention and mobility of atmospheric particle-associated organic pollutant PCDD/Fs and PAHs in maize leaves. New Phytol. 2000;148:473-480. https://doi.org/10.1046/j.1469-8137.2000.00770.x
  16. Liang YC, Sun WC, Zhu YG, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007;147:422-428. https://doi.org/10.1016/j.envpol.2006.06.008
  17. Watts AW, Ballestero TP, Gardner KH. Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 2006;62:1253-1260. https://doi.org/10.1016/j.chemosphere.2005.07.006
  18. Gumgum B, Unlu E, Tez Z, Gulsun Z. Heavy-metal pollution in water, sediment and fish from the Tigris River in Turkey. Chemosphere 1994;29:111-116. https://doi.org/10.1016/0045-6535(94)90094-9
  19. Kabata-Pendias A. Trace elements in soils and plants. CRC Press; 2010. p. 548.
  20. Oves M, Saghir KM, Huda QA, Nadeen FM, Almeelbi T. Heavy metals: Biological importance and detoxification strategies. J. Bioremediat. Biodegrad. 2016;7:1-15.
  21. Reichman SM. The responses of plants to metal toxicity: A review focusing on copper, manganese and zinc. Australian Minerals and Energy Environment Foundation; 2002.
  22. Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci. 2007;173:190-197. https://doi.org/10.1016/j.plantsci.2007.05.004
  23. Ogundiran MB, Osibanjo O. Heavy metal concentrations in soils and accumulation in plants growing in a deserted slag dumpsite in Nigeria. Afr. J. Biotechnol. 2008;7:3053-3060.
  24. Azevedo RA, Gratao PL, Monteiro CC, Carvalho RF. What is new in the research on cadmium-induced stress in plants? Food Energy Secur. 2012;1:133-140. https://doi.org/10.1002/fes3.10
  25. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011;123:305-332. https://doi.org/10.1093/toxsci/kfr184
  26. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. Chromium toxicity in plants. Environ. Int. 2005;31:739-753. https://doi.org/10.1016/j.envint.2005.02.003
  27. Jin RF, Liu Y, Liu GF, Tian T, Qiao S, Zhou JT. Characterization of product and potential mechanism of Cr(VI) reduction by anaerobic activated sludge in a sequencing batch reactor. Sci. Rep. 2017;7:1681. https://doi.org/10.1038/s41598-017-01885-z
  28. Prasad MNV. Heavy metal stress in plants: From biomolecules to ecosystems. Springer Verlag Berlin Heidelberg GmbH; 2004.
  29. Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals - Concepts and applications. Chemosphere 2013;91:869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075
  30. Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A. Cadmium: Toxicity and tolerance in plants. J. Environ. Biol. 2009;30:165-174.
  31. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010;8:199-216. https://doi.org/10.1007/s10311-010-0297-8
  32. Andersen V, Maage A, Johannessen P. Heavy metals in blue mussels (Mytilus edulis) in the Bergen Harbor Area, Western Norway. Bull. Environ. Contam. Toxicol. 1996;57:589-596. https://doi.org/10.1007/s001289900231
  33. Zhai XQ, Li ZW, Huang B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 2018;635:92-99. https://doi.org/10.1016/j.scitotenv.2018.04.119
  34. Parthasarathi R, Sivakumaar PK. Biosurfactant mediated remediation process evaluation on a mixture of heavy metal spiked topsoil using soil column and batch washing methods. Soil Sediment Contam. 2011;20:892-907. https://doi.org/10.1080/15320383.2011.620043
  35. Gao JB, Zhao J, Dong CX, Wu LH, Hu PJ. Remediation of metal-contaminated paddy soils by chemical washing with FeCl3 and citric acid. J. Soil. Sediment. 2018;18:1020-1028. https://doi.org/10.1007/s11368-017-1759-4
  36. Fedje KK, Yillin L, Stromvall AM. Remediation of metal polluted hotspot areas through enhanced soil washing - Evaluation of leaching methods. J. Environ. Manage. 2013;128:489-496. https://doi.org/10.1016/j.jenvman.2013.05.056
  37. White JC. Phytoremediation of weathered p,p'-DDE residues in soil. Int. J. Phytoremediat. 2000;2:133-144. https://doi.org/10.1080/15226510008500035
  38. De La Torre-Roche R, Hawthorne J, Musante C, et al. Impact of Ag nanoparticle exposure on p,p'-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ. Sci. Technol. 2013;47:718-725. https://doi.org/10.1021/es3041829
  39. Mattina MJI, Iannucci-Berger W, Eitzer BD, White JC. Rhizotron study of cucurbitaceae: Transport of soil-bound chlordane and heavy metal contaminants differs with genera. Environ. Chem. 2004;1:86-89. https://doi.org/10.1071/EN04048
  40. Mattina MI, Lannucci-Berger W, Musante C, White JC. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Pollut. 2003;124:375-378. https://doi.org/10.1016/S0269-7491(03)00060-5
  41. Akeem OB, Bassam ST, Amjad BK, Christopher RB, Tawfik AS. Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng. 2018;120:126-133. https://doi.org/10.1016/j.ecoleng.2018.05.035
  42. White JC. Differential bioavailability of field-weathered p,p'-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 2002;49:143-152. https://doi.org/10.1016/S0045-6535(02)00277-1
  43. White JC, Parrish ZD, Isleyen M, et al. Uptake of weathered p,p'-DDE by plant species effective at accumulating soil elements. Microchem. J. 2005;81:148-155. https://doi.org/10.1016/j.microc.2005.01.010
  44. White JC, Wang XP, Gent MPN, et al. Subspecies-level variation in the phytoextraction of weathered p,p'-DDE by Cucurbita pepo. Environ. Sci. Technol. 2003;37:4368-4373. https://doi.org/10.1021/es034357p
  45. TUIK. Agricultural structure production, price, value. Turkish Statistical Institute, Ankara, Turkey; 2016.
  46. Isleyen M, Sevim P, Uslan M. DDX profiles in agricultural fields used for cucurbit production in Sakarya, Turkey. Soil Sediment Contam. 2013;22:689-700. https://doi.org/10.1080/15320383.2013.756451
  47. Mattina MJI, Iannucci-Berger W, Dykas L, Pardus J. Impact of long-term weathering, mobility, and land use on chlordane residues in soil. Environ. Sci. Technol. 1999;33:2425-2431. https://doi.org/10.1021/es990012o
  48. Stilwell DE, Graetz TJ. Copper, chromium, and arsenic levels in soil near highway traffic sound barriers built using CCA pressure-treated wood. Bull. Environ. Contam. Toxicol. 2001;67:303-308. https://doi.org/10.1007/s001280125
  49. Mattina MI, Isleyen M, Eitzer BD, Iannucci-Berger W, White JC. Uptake by Cucurbitaceae of soil-borne contaminants depends upon plant genotype and pollutant properties. Environ. Sci. Technol. 2006;40:1814-1821. https://doi.org/10.1021/es051572s
  50. Telli-Karakoc F, Tolun L, Henkelmann B, Klimm C, Okay O, Schramm KW. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in the Bay of Marmara sea: Izmit Bay. Environ. Pollut. 2002;119:383-397. https://doi.org/10.1016/S0269-7491(01)00341-4
  51. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173:677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  52. Sisman I, Imamoglu M, Aydin AO. Determination of heavy metals in roadside soil from Sapanca Area Highway, Turkey. Int. J. Environ. Pollut. 2002;17:306-311. https://doi.org/10.1504/IJEP.2002.000674
  53. Chen CY, Huang DJ, Liu JQ. Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean-Soil Air Water 2009;37:304-313. https://doi.org/10.1002/clen.200800199
  54. Siddiqui MH, Al-Whaibi MH, Basalah MO. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 2011;248:503-511. https://doi.org/10.1007/s00709-010-0197-6
  55. Altundag H, Albayrak S, Dundar M, Tuzen M, Soylak M. Investigation of the influence of selected soil and plant properties from Sakarya, Turkey, on the bioavailability of trace elements by applying an in vitro digestion model. Biol. Trace Element Res. 2015;168:276-285. https://doi.org/10.1007/s12011-015-0330-7

피인용 문헌

  1. Land application of municipal sewage sludge: Human health risk assessment of heavy metals vol.319, 2019, https://doi.org/10.1016/j.jclepro.2021.128568
  2. Monitoring and risk assessment of arsenic species and metals in the Taehwa River in Ulsan, the largest industrial city in South Korea vol.172, 2021, https://doi.org/10.1016/j.marpolbul.2021.112862