DOI QR코드

DOI QR Code

A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine

  • Ozer, Tugba (Faculty of Chemistry-Metallurgy, Department of Bioengineering, Yildiz Technical University) ;
  • Isildak, Ibrahim (Faculty of Chemistry-Metallurgy, Department of Bioengineering, Yildiz Technical University)
  • Received : 2019.03.31
  • Accepted : 2019.05.03
  • Published : 2019.09.30

Abstract

A new miniaturized all solid-state contact Fe (III)-selective PVC membrane electrode based on Fe (II) phthalocyanine as a neutral carrier was described. The effects of the membrane composition and foreign ions on the electrode performance was investigated. The best performance was obtained with a membrane containing 32% poly (vinyl chloride), 64% dioctylsebacate, 3% Fe (II) phthalocyanine, and 1% potassium tetrakis (p-chlorophenyl) borate. The electrode showed near Nernstian response of $26.04{\pm}0.95mV/decade$ over the wide linear concentration range $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}M$, and a very low limit of detection $1.8{\pm}0.5{\times}10^{-7}M$. The potentiometric response of the developed electrode was independent at pH 3.5-5.7. The lifetime of the electrode was approximately 3 months and the response time was very short (< 7 s). It exhibited excellent selectivity towards Fe (III) over various cations. The miniaturized all solid-state contact Fe (III)-selective membrane electrode was successfully applied as an indicator electrode for the potentiometric titration of $1.0{\times}10^{-3}M$ Fe (III) ions with a $1.0{\times}10^{-2}M$ EDTA and the direct determination of Fe (III) ions in real water samples.

Keywords

References

  1. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks, Blackwell Scientific, 1985.
  2. X. Liu and E. C Theil, Accounts Chem. Res., 2005, 38(3), 167-175. https://doi.org/10.1021/ar0302336
  3. J. G. Rueler and D. R. Ades, J. Phycol., 1987, 23(3), 452-457. https://doi.org/10.1111/j.1529-8817.1987.tb02531.x
  4. P. Boyd and M. Ellwood, Nat. Geosci., 2010, 3(10), 675. https://doi.org/10.1038/ngeo964
  5. S. Oshiro, M. S. Morioka and M. Kikuchi, Adv. Pharmacol. Sci., 2011.
  6. D. J. Bonda, H. G. Lee, J. A. Blair, X. Zhu, G. Perry and M. A. Smith, Metallomics, 2011, 3(3), 267-270. https://doi.org/10.1039/c0mt00074d
  7. D. Galaris, V. Skiada and A. Barbouti, Cancer Lett., 2008, 266(1), 21-29. https://doi.org/10.1016/j.canlet.2008.02.038
  8. S. K. Mittal, S. Rana, N. Kaur and C. E. Banks, Analyst, 2018, 143(12), 2851-2861. https://doi.org/10.1039/C8AN00174J
  9. V. A. Elrod, K. S. Johnson and K. H. Coale, Anal. Chem., 1991, 63(9), 893-898. https://doi.org/10.1021/ac00009a011
  10. A. R. Bowie, E. P. Achterberg, R. F. C. Mantoura and P. J. Worsfold, Anal. Chim. Acta, 1998, 361(3), 189-200. https://doi.org/10.1016/S0003-2670(98)00015-4
  11. K. W. Cha and K. W. Park, Talanta, 1998, 46(6), 1567-1571. https://doi.org/10.1016/S0039-9140(98)00032-0
  12. M. Grotti, F. Soggia, F. Ardini and R. Frache, J. Anal. At. Spectrom., 2009, 24(4), 522-527. https://doi.org/10.1039/b818236a
  13. G. P. G. Freschi, C. D. Freschi and J. A. G. Neto, Microchim. Acta, 2008, 161(1-2), 129-135. https://doi.org/10.1007/s00604-007-0884-y
  14. J. De Jong, V. Schoemann, D. Lannuzel, J. L. Tison and N. Mattielli, Anal. Chim. Acta, 2008, 623(2), 126-139. https://doi.org/10.1016/j.aca.2008.06.013
  15. Y. Cui, Z. J. Hu, J. X. Yang and H.W. Gao, Anal. Chim. Acta, 2012, 176(3-4), 359-366.
  16. N. A. Papadopoulou, A. B. Florou and M. I. Prodromidis, Anal. Lett., 2018, 51(1-2), 198-208. https://doi.org/10.1080/00032719.2017.1302464
  17. D. Akyuz, B. Keskin, U. Sahinturk and A. Koca, Appl. Catal. B, 2016, 188, 217-226. https://doi.org/10.1016/j.apcatb.2016.02.003
  18. M. M. Ayhan, A. Singh, C. Hirel, A. G. Gu?rek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud and Y. Bretonniere, J. Am. Chem. Soc., 2012, 134(8), 3655-3658. https://doi.org/10.1021/ja211064a
  19. M. L. Rodriguez-Mendez, M. Gay and J. A. de Saja, J. Porphyr. Phthalocyanines, 2009, 13(11), 1159-1167. https://doi.org/10.1142/S1088424609001509
  20. B. Ceken, M. Kandaz and A. Koca, Synth. Met., 2012, 162(17-18), 1524-1530. https://doi.org/10.1016/j.synthmet.2012.07.019
  21. K. Kadish, K. M. Smith and R. Guilard, The Porphyrin Handbook, Academic Press, 2003.
  22. U. Khamjumphol, S. Watchasit, C. Suksai, W. Janrungroatsakul, S. Boonchiangma, T. Tuntulani and W. Ngeontae, Anal. Chim. Acta, 2011, 704(1-2), 73-86. https://doi.org/10.1016/j.aca.2011.08.005
  23. E. Bakker, P. Buhlmann and E. Pretsch, Chem. Rev., 1997, 97(8), 3083-3132. https://doi.org/10.1021/cr940394a
  24. T. Ozer and I. Isildak, Int. J. Electrochem. Sci., 2018, 13(12), 11375-11387.
  25. A. Malon, A. Radu, W. Qin, Y. Qin, A. Ceresa, M. Maj-Zurawska, E. Bakker and E. Pretsch, Anal. Chem., 2003, 75(15), 3865-3871. https://doi.org/10.1021/ac026454r
  26. A. Soleymanpour, B. Shafaatian, A. Hanifi and A. A. Jarrahpour, J. Electrochem. Soc., 2014, 161(1), 14-18.
  27. A. Soleymanpour, S. Abdifar and R. Bani, Electroanalysis, 2011, 23(12), 2813-2821. https://doi.org/10.1002/elan.201100281
  28. R. Eugster, T. Rosatzin, B. Rusterholz, B. Aebersold, U. Pedrazza, D. Ruegg, A. Schmid, U. E. Spichiger and W. Simon, Anal. Chim. Acta, 1994, 289(1), 1-13. https://doi.org/10.1016/0003-2670(94)80001-4
  29. T. A. Ali, A. A. Farag and G. G. Mohamed, J. Ind. Eng. Chem., 2014, 20(4), 2394-2400. https://doi.org/10.1016/j.jiec.2013.10.019
  30. F. J. Keplinger, A. Jachimowicz and F. Kohl, Anal. Chem., 1998, 70(20), 4271-4279. https://doi.org/10.1021/ac980389x
  31. B. Shafaatian, S. O. Sadati, A. Soleymanpour and F. Amouzad, J. Anal. Chem., 2018, 73(12), 1202-1208. https://doi.org/10.1134/S106193481812002X
  32. H. Ghohari, H. A. Zamani, F. Joz-Yarmohammadi, M. Ebrahimi and M. R. Abedi, Russ. J. Electrochem., 2018, 54(10), 747-754. https://doi.org/10.1134/S1023193518100038
  33. F. Joz-Yarmohammadi, H. A. Zamani and F. Mohammadabadi, Int. J. Electrochem. Sci, 2015, 10, 8124-8136.
  34. M. Ghaedi, M. Montazerozohori, M. Behfar and F. Marahel, Int. J. Electrochem. Sci., 2011, 6, 6074-84.
  35. Y. Umezawa, K. Umezawa and H. Sato, Pure Appl. Chem., 1995, 67(3), 507-518. https://doi.org/10.1351/pac199567030507
  36. H. A. Zamani and F. Faridbod, J. Anal. Chem., 2014, 69(11), 1073-1078. https://doi.org/10.1134/S1061934814110069
  37. T. A. Ali, G. G. Mohamed and A. H. Farag, Int. J. Electrochem. Sci, 2015, 10(1), 564-578.
  38. M. M. Zareh, W. Zordek and A. Abd-Alhady, J. Sens. Technol., 2014, 4(4), 186. https://doi.org/10.4236/jst.2014.44018
  39. A. Yari, M. Bagheri and M. A. Ghazizadeh, Int. J. Electrochem. Sci, 2016, 11, 6597-6608.
  40. A. L. Saber, A. M. Hameed, A. A. Sayqal, H. Alessa and A. Alharbi, Int. J. Electrochem. Sci., 2018, 13, 10076-10087.

Cited by

  1. Potentiometric Response of Solid-State Sensors Based on Ferric Phosphate for Iron(III) Determination vol.21, pp.5, 2019, https://doi.org/10.3390/s21051612