References
- E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. the scalar case, Numer. Math., 97 (2004), 81-130. https://doi.org/10.1007/s00211-002-0438-5
- E. Godlewski, K.-C. Le Thanh, P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The system case, M2AN Math. Model. Numer. Anal., 39 (2005), 649-692. https://doi.org/10.1051/m2an:2005029
- A. Ambroso, Ch. Chalons, F. Coquel, E. Godlewski, J.-M. Herard, F. Lagoutiere, P.-A. Raviart, and N. Seguin, The coupling of multiphase flow models, Proceedings of Nureth-11, Avignon, France, 2005.
- J.-M. Herard, O. Hurisse, Coupling two and one-dimensional unsteady Euler equations through a thin interface, Computer and Fluids, 36 (2007), 651-666. https://doi.org/10.1016/j.compfluid.2006.03.007
- A. Ambroso, Ch. Chalons, F. Coquel, E. Godlewski, J.-M. Herard, F. Lagoutiere, P.-A. Raviart, and N. Seguin, The coupling of homogeneous models for two-phase flows, Int. Journal for Finite Volume, 4 (2007), 1-39.
- A. Ambroso, Ch. Chalons, F. Coquel, E. Godlewski, J.-M. Herard, F. Lagoutiere, P.-A. Raviart, N. Seguin, and J.-M. Herard, Coupling of multiphase flow models, Proceedings of the 11th international meeting on nuclear thermohydraulics, Nureth, 2005.
- F. Coquel, Coupling of nonlinear hyperbolic systems: A journey from mathematical to numerical issues, in Vazquez-Cendon et al. (Eds.), Numerical Methods for Hyperbolic Equations, Taylor & Francis Group, London, (2013), 21-35.
-
B. Andreianov, K. H. Karlsen, and N. H. Risebro, A theory of
$L_1$ -dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Rational Mech. Anal., 201 (2011), 27-86. https://doi.org/10.1007/s00205-010-0389-4 - R. Burger, K. H. Karlsen, Conservation laws with discontinuous flux: a short introduction, J. Engrg. Math., 60 (2008), 241-247. https://doi.org/10.1007/s10665-008-9213-7
- R. Burger, K.H. Karlsen, J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 3 (2009), 1684-1712.
- S. Diehl, On scalar conservation laws with point source and discontinuous flux function, SIAM J. Math. Anal., 26 (1995), 1425-1451. https://doi.org/10.1137/S0036141093242533
- K. H. Karlsen, N. H. Risebro, and J. D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient, IMA J. Numer. Anal., 22(4) (2004), 623-664. https://doi.org/10.1093/imanum/22.4.623
-
K.H. Karlsen, N.H. Risebro, J. D. Towers,
$L_1$ -stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with discontinuous coefficients, Skr.-K. Nor. Vidensk. Selsk. 3 (2003) 1-49. - W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Report LA-UR- 73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.
- P. LeSaint, and P. A. Raviart, On a finite element method for solving the neutron transport equation, In de Boor, C. (Eds.), Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, (1974), 89-145.
- C. Johnson and J. Pitkaranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), 1-26. https://doi.org/10.1090/S0025-5718-1986-0815828-4
- T. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM. J. Numer. Anal., 28 (1991), 133-140. https://doi.org/10.1137/0728006
- G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method, Math. Comp., 50 (1988), 75-88. https://doi.org/10.1090/S0025-5718-1988-0917819-3
- B. Cockburn, S. Hou, and C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin method for conservation laws IV: the multidimensional case, Math. Comp., 54 (1990), 545-581. https://doi.org/10.1090/S0025-5718-1990-1010597-0
- C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
- B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework, Math. Comp., 52 (1989), 411-435. https://doi.org/10.1090/S0025-5718-1989-0983311-4
- B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: Multidimensional systems, J. Comput. Phys.,141 (1998), 199-224. https://doi.org/10.1006/jcph.1998.5892
- B. Cockburn, G.E. Karniadakis, and C. W. Shu (Eds.), Discontinuous Galerkin methods theory, computation and applications, Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin, 2000.
- J.S. Hesthaven, T.Warburton, Nodal Discontinuous Galerkin Methods: algorithms, analysis, and applications, Texts in Applied Mathematics, vol. 54, Springer Verlag, New York, USA, 2008.
- M. Izadi, Streamline diffusion methods for treating the coupling equations of two hyperbolic conservation laws, Math. Comput. Model., 45 (2007), 201-214. https://doi.org/10.1016/j.mcm.2006.05.004
- A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal., 160 (2001), 181-193. https://doi.org/10.1007/s002050100157
- S.N. Kruzkov, First order quasilinear equations in several independent variables, USSR Math. Sbornik. 10 (2) (1970) 217-243. https://doi.org/10.1070/SM1970v010n02ABEH002156
- Adimurthi and G. D. V. Gowda, Conservation laws with discontinuous flux, J. Math. Kyoto Univ., 43 (2003), 27-70. https://doi.org/10.1215/kjm/1250283740
- Y. Cheng, C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM J. Numer. Anal., 47 (2010), 4044-4072. https://doi.org/10.1137/090747701
- S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM. J. Numer. Anal., 21 (1984), 217-235. https://doi.org/10.1137/0721016
- G. Jiang, C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comput., 206 (1994), 531-538. https://doi.org/10.1090/S0025-5718-1994-1223232-7
- M. Izadi, A posteriori error estimates for the coupling equations of scalar conservation laws, BIT Numer. Math., 49(4) (2009), 697-720. https://doi.org/10.1007/s10543-009-0243-y
- M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965.
- S. Bertoluzza, S. Falletta, G. Russo, and C.-W. Shu, Numerical Solution of Partial Differential Equations, in: Advanced Courses in Mathematics, CRM, Barcelona, 2008.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Amesterdam, North Holland, 1987.
- B. Cockburn, C.-W, Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261. https://doi.org/10.1023/A:1012873910884
- J.-M. Herard, Schemes to couple flows between free and porous medium, Proceedings of AIAA (2005), 2005-4861.