References
- M.W. Vannier, J.L. Marsh, J.O.Warren, Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation, Radiol., 150(1) (1984), 179-184. https://doi.org/10.1148/radiology.150.1.6689758
- P.J. Koltai and G.W. Wood, Three dimensional CT reconstruction for the evaluation and surgical planning of facial fractures, JAMA Otolaryngol. Head Neck Surg., 95(1) (1986), 10-15.
- L.J. Marentette and R.H. Maise, Three-dimensional CT reconstruction in midfacial surgery, JAMA Otolaryngol. Head Neck Surg., 98(1) (1988), 48-52. https://doi.org/10.1177/019459988809800109
- Z. Tian, X. Jia, K. Yuan, T. Pan, and S.B. Jiang, Low-dose CT reconstruction via edge-preserving total variation regularization, Phys. Med. Biol., 56(18) (2011), 5949. https://doi.org/10.1088/0031-9155/56/18/011
- A.K. Hara, R.G. Paden, A.C. Silva, J.L. Kujak, H.J. Lawder, and W. Pavlicek, Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study, AJR Am. J Roentgenol., 193(3) (2009), 764-771. https://doi.org/10.2214/AJR.09.2397
- L.L. Geyer, U.J. Schoepf, F.G. Meinel, J.W. Nance et al., State of the art: iterative CT reconstruction techniques, Radiol. 276(2) (2015), 339-357. https://doi.org/10.1148/radiol.2015132766
- E. Soodmand, G. Zheng,W. Steens, R. Bader, L. Nolte, and D. Kluess, Surgically Relevant Morphological Parameters of Proximal Human Femur: A Statistical Analysis Based on 3D Reconstruction of CT Data, Orthop. Surg., 11(1) (2019), 135-142. https://doi.org/10.1111/os.12416
- A. Amruta, A. Gole, and Y. Karunakar, A systematic algorithm for 3-D reconstruction of MRI based brain tumors using morphological operators and bicubic interpolation, 2010 2nd Int. Conf. Comp. Techn. Dev. IEEE, 2010.
- A. Gholipour, J.A. Estroff, C.E. Barnewolt, S.A. Connolly, and S.K. Warfield, Fetal brain volumetry through MRI volumetric reconstruction and segmentation, Int. J Comput. Assist. Radiol. Surg., 6(3) (2011), 329-339. https://doi.org/10.1007/s11548-010-0512-x
- Z. Yang, K. Richards, N.D. Kurniawan, S. Petrou, and D.C. Reutens, MRI-guided volume reconstruction of mouse brain from histological sections, J Neurosci. Methods, 211(2) (2012), 210-217. https://doi.org/10.1016/j.jneumeth.2012.08.021
- D.F.A. Lloyd, K. Pushparajah, J.M. Simpson, J.F.P. van Amerom, M.P.M van Poppel et al., Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study, The Lancet, 393(10181) (2019), 1619-1627. https://doi.org/10.1016/S0140-6736(18)32490-5
- S. Lee, Y. Choi, D. Lee, H.K. Jo, S. Lee, S. Myung, and J. Kim, A modified Cahn-Hilliard equation for 3D volume reconstruction from two planar cross sections, J. Korean Soc. Ind. Appl. Math., 19(1) (2015), 47-56. https://doi.org/10.12941/jksiam.2015.19.047
- M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn-Hilliard equation, SIAM J. Numer. Anal., 55(4) (2017) 1689-1718. https://doi.org/10.1137/16M1075302
- Z. Weng, S. Zhai, and X. Feng, A Fourier spectral method for fractional-in-space Cahn-Hilliard equation, Appl. Math. Model., 42 (2017) 462-477. https://doi.org/10.1016/j.apm.2016.10.035
- J. Bosch and M. Stoll, A fractional inpainting model based on the vector-valued Cahn-Hilliard equation, SIAM J. Imaging Sci., 8(4) (2015) 2352-2382. https://doi.org/10.1137/15M101405X
- D. Lee and S. Lee, Image segmentation based on modified fractional Allen-Cahn equation, Math. Probl. Eng., 2019 (2019) 3980181.
- D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Proc., 529 (1998) 39. https://doi.org/10.1557/PROC-529-39
- A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, W. Cai, M. Meerschaert, M. Ainsworth, and G. Karniadakis, What is the fractional Laplacian?, arXiv preprint arXiv:1801.09767 (2018).
- C. Bajaj, E. Coyle, and K. Lin, Arbitrary topology shape reconstruction from planar cross sections, Graph. Model. Im. Proc., 58(6) (1996) 524-543. https://doi.org/10.1006/gmip.1996.0044
- M. Xiang, B. Zhang, and D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal. 178 (2019) 190-204. https://doi.org/10.1016/j.na.2018.07.016