References
- J. Cash, Second derivative extended backward differentiation formula for the numerical integration of stiff system, SIAM J. Numer. Anal. 18 (1981), 21-36. https://doi.org/10.1137/0718003
- E. Hairer and G. Wanner, Numerical Methods for Initial Value Problems in Ordinary Differential Equations II, Springer, Berlin, 1996.
- G. Dahlquist, Convergence and stability in the Numerical integration of ODEs, Academic Press, New York 4(1956), 69-86.
- P. Henrici, Discrete Variable Methods in ODEs, John Wiley, New York, 1962.
- J. Lambert, Numerical Methods for Ordinary Differential Equations, Wiley, New York, 1991.
- G. Dahlquist, A special stability problem for linear multistep methods, BIT. 3 (1963), 27-43. https://doi.org/10.1007/BF01963532
- N. Obreckoff, Neue Quadraturformeln, Abh Preuss Akad. Wiss Math. Nat. K1 4 (1940).
- W.H. Enright, it Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer. Anal. 11 (1974), 321-331. https://doi.org/10.1137/0711029
- G. Ismail and I. Ibrahim, New efficient second derivative multistep methods for stiff systems, appl. Math. Model. 23 (1999), 279-288. https://doi.org/10.1016/S0307-904X(98)10086-0
- G. Hojjati, M. Rahimi Ardabili and S. Hosseini, New second derivative multistep methods for stiff systems, appl. Math. Model. 30 (2006), 466-476. https://doi.org/10.1016/j.apm.2005.06.007
- J. Cash, On the exponential fitting of composite, multiderivative linear multistep methods, SIAM J. Numer. Anal. 18 (1981), 808-821. https://doi.org/10.1137/0718055
- P. Amodio, W.Golik and F. Mazzia , Variable-step boundary value methods based on reverse Adams schemes and their grid distribution, Appl. Numer. Math. 18 (1995), 5-21. https://doi.org/10.1016/0168-9274(95)00044-U
- L. Brugnano and D. Trigiante, Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66 (1996), 97-109. https://doi.org/10.1016/0377-0427(95)00166-2
- L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Breach Science Publishers, Amsterdam 1998.
- A. Axelsson and J. Verwer, Boundary value techniques for initial value problems in ordinary differential equations, Math. Comput. 45 (1985), 153-171. https://doi.org/10.1090/S0025-5718-1985-0790649-9
- J.Ehigie, S. Jator, S. Sofoluwe and A. Okunuga, Boundary value technique for initial value problems with continuous second derivative multistep method of Enright, Comput. Appl. Math. 33 (2014), 81-93. https://doi.org/10.1007/s40314-013-0044-4
- S. Jator and R. Sahi, Boundary value technique for initial value problems based on Adams-type second derivative methods, Int. J. Math. Educ. Sci. Educ. iFirst (2010), 1-8.
- L. Aceto and D. Trigante, On the A-stable method in the GBDF class, Nonlinear Analysis Real World appl. 3 (2002), 9-23. https://doi.org/10.1016/S1468-1218(01)00009-8
- P. Amodio and F. Mazzia, Boundary value methods for the solution of differential-algebraic equations, Appl. Numer. Math. 66 (1994), 411-421.
- P. Amodio and F. Mazzia, Boundary value methods based on Adams-type method, Appl. Numer. Math. 18 (1995), 23-25. https://doi.org/10.1016/0168-9274(95)00041-R
- L. Brugnano and D. Trigiante, Block boundary value methods for linear hamiltonian systems, Appl. Math. Comput. 81 (1997), 49-68. https://doi.org/10.1016/0096-3003(95)00308-8
- L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems. Appl. Numer. Math. 18 (1985), 79-94. https://doi.org/10.1016/0168-9274(95)00045-V
- L. Brugnano and D. Trigiante, Block implicit methods for ODEs, in: D Trigiante (Ed.), Recent Trends in Numerical Analysis, Nova Science, New York (2000), 81-105.
- F. Iavernafo and F. Mazzia, Convergence and stability of multistep methods solving nonlinear initial value problems. SIAM J. Sci. Comput. 18 (1997), 270-285. https://doi.org/10.1137/S1064827595287122
- F. Iavernafo, F. Mazzia, Solving ordinary differential equations by generalized Adams methods: Properties and implementation techniques, Appl. Numer. Math. 28 (1998), 107-126. https://doi.org/10.1016/S0168-9274(98)00039-7
- F. Iavernafo, F. Mazzia and D. Trigiante, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices: some properties and application, Numer. algorithm 31 (2002), 157-170. https://doi.org/10.1023/A:1021197900145
- G. Nwachukwu, M. Ikhile and J. Osaghae, On some boundary value methods for stiff IVPs in ODEs, Afr. Mat. 29 (2018) 731-752. https://doi.org/10.1007/s13370-018-0574-4
- J. Zhang and H. Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic equations, Math. Comput. Simulation 81 (2010), 100-108. https://doi.org/10.1016/j.matcom.2010.07.012
- J. Zhang and H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math. 60 (2010), 915-923. https://doi.org/10.1016/j.apnum.2010.05.001
- F. Mazzia, Boundary Value Methods for the numerical solution of boundary value problems in differential algebraic equations, Bollettino dellUnione Matematica Italiana 7 (1997), 579-593.
- L. Brugnano, F. Lavernaro and T. Susca, Hamiltonian BVMs (HBVMs): implementation details and applications, AIP. Conf. Proc. 1168 (2009), 723-726.
- L. Brugnano, F. Lavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math. 5 (2010), 17-37.
- F. Mazzia and A. Nagy, Solving Volterra integro-differential equations by variable stepsize block BS methods: properties and implementation techniques, Appl. Math. Comput. 239 (2014) 198-210. https://doi.org/10.1016/j.amc.2014.04.030
- J. Zhang and H. Chen, Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations, Appl. Numer. Math. 62 (2012), 141-154. https://doi.org/10.1016/j.apnum.2011.11.001
- Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation, J. Differ. Eqn. Appl. 119 (2013), 1127-1242.
- Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation with many delays, App. Mat. Model 38 (2014), 325-335. https://doi.org/10.1016/j.apm.2013.06.013
- G. Nwachukwu and T. Okor, Second derivative generalised backward differentiation formulae for solving stiff problems, LAENG. Int. J. Appl. Math. 48 (2018), 1-15.
- G. Nwachukwu and N. Mokwunyei, Generalized Adams-Type Second Derivative Methods for Stiff Systems of ODEs, LAENG Int. J. Appl. Math. 48 (2018), 4-14.
- S. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic Press Inc, London, 1989.
- R. Beam and R. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput. 14 (1993), 971-1006. https://doi.org/10.1137/0914059
- M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press Inc., New York, 2004.
- X. Wu and J. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput. 123 (2001) 141-153. https://doi.org/10.1016/S0096-3003(00)00010-2
- C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey, 1971.
- F. Ngwane and S.Jator, Block hybrid-second derivative method for stiff systems, Int. J. Pure Appl. Math. 80 (2012) 543-559.
- D.J. Higham, N.J. Higham, MaTLAB guide. 2nd ed. SIAM, Philadelphia, 2005.