DOI QR코드

DOI QR Code

Nonlinear thermal buckling of bi-directional functionally graded nanobeams

  • Gao, Yang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ;
  • Xiao, Wan-shen (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ;
  • Zhu, Haiping (School of Computing, Engineering and Mathematics, Western Sydney University)
  • Received : 2019.01.15
  • Accepted : 2019.04.18
  • Published : 2019.09.25

Abstract

We in this article study nonlinear thermal buckling of bi-directional functionally graded beams in the theoretical frameworks of nonlocal strain graded theory. To begin with, it is assumed that the effective material properties of beams vary continuously in both the thickness and width directions. Then, we utilize a higher-order shear deformation theory that includes a physical neutral surface to derive the size-dependent governing equations combining with the Hamilton's principle and the von $K{\acute{a}}rm{\acute{a}}n$ geometric nonlinearity. It should be pointed out that the established model, containing a nonlocal parameter and a strain gradient length scale parameter, can availably account for both the influence of nonlocal elastic stress field and the influence of strain gradient stress field. Subsequently, via using a easier group of initial asymptotic solutions, the corresponding analytical solution of thermal buckling of beams is obtained with the help of perturbation method. Finally, a parametric study is carried out in detail after validating the present analysis, especially for the effects of a nonlocal parameter, a strain gradient length scale parameter and the ratio of the two on the critical thermal buckling temperature of beams.

Keywords

References

  1. Abadi, R.E. and Bahar, O. (2018), "Investigation of the LS Level Hysteretic Damping Capacity of Steel MR Frames'Needs for the Direct Displacement-Based Design Method," KSCE J. Civil Eng., 22(4),1304-1315.https://doi.org/10.1007/s12205-017-1321-3.
  2. Abdelaziz, H. H., Meziane, M. A. A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R., and Alwabli, A. S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25, 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  3. Ahmed, S.R. and Mamun, A.A. (2017), "Analytical investigation of fiber-orientation dependent stresses in a thick stiffened fiberreinforced composite beam on simple supports", Meccanica, 53, 1049. https://doi.org/10.1007/s11012-017-0775-1.
  4. Ahouel, M., Houari, M. S. A., Bedia, E. A., and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel and Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  5. Akgoz, B. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded microscaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009.
  6. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct. 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  7. Ansari, R., Sahmani, S. and Rouhi, H. (2011), "Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique", Comp. Mater. Sci., 50(10), 3050-3055. https://doi.org/10.1016/j.commatsci.2011.05.027.
  8. Ansari, R., Gholami, R., Shojaei, M. F., Mohammadi, V., and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct., 100(5), 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048.
  9. Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., et al. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci. 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002.
  10. Artioli, E. (2018), "Asymptotic homogenization of fibrereinforced composites: a virtual element method approach", Meccanica, 53(6), 1187-1201. https://doi.org/10.1007/s11012-018-0818-2.
  11. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  12. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A. and Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27, 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  13. Barati, R.M. (2017a), "Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity", Eur. Phys. J. Plus, 132(9), 378. https://doi.org/10.1140/epjp/i2017-11670-x.
  14. Barati, M.R. (2017b), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mech. 229(3), 1-14. https://doi.org/10.1007/s00707-017-2032-z.
  15. Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090.
  16. Bekir, A. and Omer, C. (2013), "A size-dependent shear deformation beam model based on the strain gradient elasticity theory", Int. J. Eng. Sci., 70(9), 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.004.
  17. Belabed, Z., Houari, M. S. A., Tounsi, A., Mahmoud, S. R., and Beg, O. A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  18. Belabed, Z., Bousahla, A. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14, 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  19. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A. A., and Mahmoud, S. R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  20. Bellifa, H., Benrahou, K. H., Bousahla, A. A., Tounsi, A., and Mahmoud, S. R. (2017b), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695 - 702. https://doi.org/10.12989/sem.2017.62.6.695.
  21. Beldjelili, Y., Tounsi, A., and Mahmoud, S. R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  22. Belkorissat, I., Houari, M. S. A., Tounsi, A., Bedia, E. A., and Mahmoud, S. R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063
  23. Bennoun, M., Houari, M. S. A., and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423 - 431. https://doi.org/10.1080/15376494.2014.984088.
  24. Besseghier, A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2017a), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601 - 614. https://doi.org/10.12989/sss.2017.19.6.601.
  25. Besseghier, A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2017b), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601 - 614. https://doi.org/10.12989/sss.2017.19.6.601.
  26. Bouadi, A., Bousahla, A. A., Houari, M. S. A., Heireche, H., and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  27. Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A., and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  28. Bouderba, B., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  29. Bounouara, F., Benrahou, K. H., Belkorissat, I., and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  30. Boukhari, A., Atmane, H. A., Tounsi, A., Adda Bedia, E. A., and Mahmoud, S. R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  31. Bourada, F., Amara, K., Bousahla, A. A., Tounsi, A., and Mahmoud, S. R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  32. Bourada, F., Bousahla, A. A., Bourada, M., Azzaz, A., Zinata, A., and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  33. Bourada, M., Kaci, A., Houari, M. S. A., and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  34. Bousahla, A. A., Houari, M. S. A., Tounsi, A., and ADDA BEDIA, E. A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Method. 11(06), https://doi.org/10.1142/S0219876213500825.
  35. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  36. Cao, H.C. and Evans, A.G. (1989), "An experimental study of the fracture resistance of bimaterial interfaces", Mech. Mater. 7(4), 295-304. https://doi.org/10.1016/0167-6636(89)90020-3.
  37. Chikh, A. , Tounsi, A. , Hebali, H. , and Mahmoud, S. R. . (2017), "Thermal buckling analysis of cross-ply laminated platesusing a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  38. Chikh, A., Tounsi, A., Hebali, H., and Mahmoud, S. R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19, 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  39. Hamza-Cherif, R., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, S., and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
  40. Draiche, K., Tounsi, A., and Mahmoud, S. R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  41. Ebrahimi, F., Reza, B.M. and Haghi, P. (2016), "Nonlocal thermoelastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams" Eur Phys. J Plus., 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0
  42. Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y.
  43. Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  44. Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part. B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010.
  45. El-Haina, F., Bakora, A., Bousahla, A. A., Tounsi, A., and Mahmoud, S. R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  46. Eltaher, M.A.M. (2013), "Determination of neutral axis position and its effect on natural frequenciesof functionally graded macro/nanobeams", Compos. Struct., 99(5),193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  47. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", App. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
  48. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  49. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci. 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  50. Fourn, H., Atmane, H. A., Bourada, M., Bousahla, A. A., Tounsi, A., and Mahmoud, S. R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  51. Gao, Y., Xiao, W. and Zhu, H. (2019a), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., 69(2), 205-219. https://doi.org/10.12989/sem.2019.69.2.205.
  52. Gao, Y., Xiao, W. and Zhu, H. (2019b), "Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method", Eur. Phys. J. Plus, 134(23), 1-24. https://doi.org/10.1140/epjp/i2019-12446-0.
  53. Gao, Y., Xiao, W. and Zhu, H. (2019c), "Free vibration analysis of nano-tubes consisted of functionally graded bi-semi-tubes by a two-steps perturbation method", Lat. Am. J. Solids Struct., 16(1), e146, 1-20. http://dx.doi.org/10.1590/1679-78255156.
  54. Ghayesh, M.H. (2018), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci. 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  55. Hamidi, A., Houari, M. S. A., Mahmoud, S. R., and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235 - 253. https://doi.org/10.12989/scs.2015.18.1.235.
  56. Hao, D. and Wei, C. (2016), "Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams", Compos. Struct., 141, 253-270. https://doi.org/10.1016/j.compstruct.2016.01.051.
  57. Hod, O., Meyer, E., Zheng, Q.S,, et al. (2018), "Structural superlubricity and ultralow friction across the length scales", Nature, 563(7732), 485-492. https://doi.org/10.1038/s41586-018-0704-z.
  58. Hosseini, M., Gorgani, H.H., Shishesaz, M. and Hadi, A. (2017), "Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory", Int. J. App. Mech., 9(6), 1750087. https://doi.org/10.1142/S1758825117500879.
  59. Hosseini, M., Shishesaz, M., Tahan, K.N. and Hadi, A. (2016), "Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials", Int. J. Eng. Sci., 109, 29-53. https://doi.org/10.1016/j.ijengsci.2016.09.002.
  60. Hosseini, M., Hadi, A., Malekshahi, A. and Shishesaz, M. (2018), "Areview of size-dependent elasticity for nanostructures", J. Comp. Appl. Mech., 49, 197-211. https://dx.doi.org/10.22059/jcamech.2018.259334.289.
  61. Huang, Y. and Li, X.F. (2010), "Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity", Int. J. Mech. Sci., 52(4), 595-601. https://doi.org/10.1016/j.ijmecsci.2009.12.008.
  62. John, P., Buchanan, G.R. and Mcnitt, R.P. (2003), "Application of nonlocal continuum models to anotechnology", Int. J. Eng. Sci. 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
  63. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018c), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004.
  64. Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Nonlocal strain gradient 3d elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct. 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  65. Karami, B., Shahsavari, D. and Janghorban, M. (2017), "Wave propagation analysis in functionally graded (fg) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  66. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel and Compos. Struct. 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
  67. Karami, B., Shahsavari, D., Janghorban, M. and Dimitri, R. (2019a), "Wave propagation of porous nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022.
  68. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018a), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", P. I. Mech. Eng. C-J Mec., 95, 440-462. https://doi.org/10.1177/0954406218781680.
  69. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Mod. Phys. Lett. B, 30(36), https://doi.org/10.1142/S0217984916504212.
  70. Karami, B. and Janghorban, M. (2019), "Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution", Eur. J.Mech.-A/Solid.,76, 36-45. https://doi.org/10.1016/j.euromechsol.2019.03.008.
  71. Karami, B and Maziar, J. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci. 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  72. Karami, B. and Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech. 70 (1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  73. Karami, B., Shahsavari, D, Janghorban, M and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci. 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  74. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using threedimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech. 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  75. Karami, B., Shahsavari, D. and Janghorban, M.A. (2018e), "Comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Tech., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
  76. Karami, B., Shahsavari, D., Li, L. and Arash Ebrahi (2019e), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct. 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.
  77. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct. 40, 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
  78. Karami, B., Maziar, J. and Abdelouahed, T. (2018f), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", https://doi.org/10.1007/s00366-018-0664-9.
  79. Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst. 23(3), 215-225. https://doi.org/10.12989/SSS.2019.23.3.215
  80. Karami, B., and Karami, S. (2019e), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res. 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  81. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A. A., and Houari, M. S. A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42.
  82. Khetir, H., Bouiadjra, M.B., Houari, M. S. A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  83. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  84. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  85. Chaht, F. L., Kaci, A., Houari, M. S. A., Tounsi, A., Beg, O. A., and Mahmoud, S. R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel. Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  86. Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
  87. Malikan, M. and Nguyen, V.B. (2018), "Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory", Physica E, 5(9), https://doi.org/10.1016/j.physe.2018.04.018.
  88. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A. A., and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  89. Meziane, M. A. A., Abdelaziz, H. H., and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 291-318.
  90. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E. A., and Mahmoud, S. R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636214526852.
  91. Miandoab, E.M., Yousefi, K.A. and Pishkenari, H.N. (2015), "Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams", Micro. Tech., 21(2), 457-464. https://doi.org/10.1007/s00542-014-2110-2.
  92. Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1, 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
  93. Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21, 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
  94. Mouffoki, A., Bedia, E. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  95. Mouffoki, A., Bedia, E. A., Houari, M. S. A., Tounsi, A., and Mahmoud, S. R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  96. Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
  97. Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
  98. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  99. Nguyen, D. K., Nguyen, Q. H., Tran, T. T., and Bui, V. T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mech., 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.
  100. Pydah, A. and Sabale, A. (2016), "Static Analysis of Bi-directional Functionally Graded Curved Beams", Compos. Struct., 160, 867-877. https://doi.org/10.1016/j.compstruct.2016.10.120.
  101. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  102. Riccardo, V., D'Ottavio, M., Lorenzo, D. et al. (2018), "Buckling and wrinkling of anisotropic sandwich plates", Int. J. Eng. Sci., 130, 136-156. https://doi.org/10.1016/j.ijengsci.2018.05.010.
  103. Shahsavari, D., Karami, B. and Mansouri, S. (2017), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. - A/Solid., 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.
  104. Shahsavari, D., Karami, B., Reza, F.H., et al. (2018b), "On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory", Acta Mech., 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7.
  105. Shahsavari, D., Karami, B. and Li, L. (2018a), "Damped vibration of a graphene sheet using a higher-order nonlocal straingradient Kirchhoff plate model", Comptes Rendus Mecanique 346(12), 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011.
  106. She, G.L., Yuan, F.G. and Ren, Y.R. (2017a), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
  107. She, G.L., Yuan, F.G., Ren, Y. R. and Xiao, W.S. (2017b), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci. 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005.
  108. She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci. 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009.
  109. She, G.L., Yuan, F. G. and Ren, Y.R. (2018b), "On wave propagation of porous nanotubes", Int. J. Eng. Sci. 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002.
  110. She, G. L., Yuan, F. G., Karami, B., Ren, Y. R., and Xiao, W. S. (2019a), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
  111. She, G.L., Ren, Y.R. and Yan, K.M. (2019b), "On snap-buckling of porous FG curved nanobeams", Acta Astronaut, https://doi.org/10.1016/j.actaastro.2019.04.010,
  112. Shen, H.S. (2013), A Two-step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley and Sons Inc., Singapore.
  113. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97(2), 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  114. Shojaeian, M., Beni, Y.T. and Ataei, H. (2016), "Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory", Acta Astron, 118(1), 62-71. https://doi.org/10.1016/j.actaastro.2015.09.015.
  115. Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  116. Srividhya, S., Basant, K., Gupta, R.K., Rajagopal, A., ans Reddy, J.N. (2018), "Influence of the homogenization scheme on the bending response of functionally graded plates", Acta Mech. 216, 67-79. https://doi.org/10.1007/s00707-018-2223-2.
  117. Taati, E. (2018), "On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment", Int. J. Eng. Sci., 128, 63-78. https://doi.org/10.1016/j.ijengsci.2018.03.010.
  118. Thai, S., Thai, H.T., Vo, T.P. and Patel, V.I. (2017), "Sizedependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis", Comput. Struct. 190, 219-241. https://doi.org/10.1016/j.compstruc.2017.05.014.
  119. Tounsi et al. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  120. Xiaobai, L.I., Li, L.I. and Yujin, H.U. (2018), "Instability of functionally graded micro-beams via micro-structure-dependent beam theory", Appl. Math. Mech. 39(7), 923-952. https://doi.org/10.1007/s10483-018-2343-8.
  121. Xu, X.J., Zheng, M.L. and Wang, X.C. (2017), "On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics", Int. J. Eng. Sci. 119, 217-231. https://doi.org/10.1016/j.ijengsci.2017.06.025.
  122. Shafiei, N. and She, G.L., (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  123. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143.
  124. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct. 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  125. Yang, T.Z., Ji, S., Yang, X.D. and Fang, B. (2014), "Microfluidinduced nonlinear free vibration of microtubes", Int. J. Eng. Sci. 76(4), 47-55. https://doi.org/10.1016/j.ijengsci.2013.11.014.
  126. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A. A., and Houari, M. S. A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
  127. Yengejeh, S.I., Kazemi, S.A. and Andreas, O. (2017), "Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches", Comp. Mater. Sci., 136, 85-101. https://doi.org/10.1016/j.commatsci.2017.04.023.
  128. Younsi, A., Tounsi, A., Zaoui, F. Z., Bousahla, A. A., and Mahmoud, S. R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14, 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  129. Youcef, D. O., Kaci, A., Benzair, A., Bousahla, A. A., and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065
  130. Yuping, Y., Yinxiang, L. and Sheng, L. (2018), "Tensile responses of carbon nanotubes-reinforced copper nanocomposites: Molecular dynamics simulation", Comp. Mater. Sci., 151, 273-277. https://doi.org/10.1016/j.commatsci.2018.05.012.
  131. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  132. Zhang, L.W., Cui, W.C. and Liew, K.M. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges", Int. J. Mech. Sci., 103(24), 9-21. https://doi.org/10.1016/j.ijmecsci.2015.08.021.
  133. Zhang, D.G. (2013a), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100(3), 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024.
  134. Zhang, D.G. (2015), "Nonlinear static analysis of FGM infinite cylindrical shallow shells based on physical neutral surface and high order shear deformation theory", Appl. Math. Model., 39(5-6), 1587-1596. https://doi.org/10.1016/j.apm.2014.09.023.
  135. Zhang, D.G. (2013b), "Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory", Int. J. Mech. Sci. 68, 92-104. https://doi.org/10.1016/j.ijmecsci.2013.01.002
  136. Zhen, Y. and Zhou, L. (2017), "Wave propagation in fluidconveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Mod. Phys. Lett. B., 31, 1750069. https://doi.org/10.1142/s0217984917500695
  137. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153 https://doi.org/10.12989/sem.2017.64.2.145
  138. Zidi et al. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerospace Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  139. Zine et al. (2018), “A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells”, Steel Compos. Struct., 26(2), 125-137.

Cited by

  1. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.271
  2. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2019, https://doi.org/10.12989/anr.2021.11.1.055