DOI QR코드

DOI QR Code

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method

앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석

  • Cha, Sang-Chul (Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University) ;
  • Moon, Jae-Hong (Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University)
  • 차상철 (제주대학교 해양과학대학 지구해양과학과) ;
  • 문재홍 (제주대학교 해양과학대학 지구해양과학과)
  • Received : 2019.06.05
  • Accepted : 2019.07.15
  • Published : 2019.09.30

Abstract

Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Keywords

References

  1. Ablain M, Cazenave A, Valladeau G, Guinehut S (2009) A new assessment of global mean sea level from altimeters highlights a reduction of global trend from 2005 to 2008. Ocean Sci Disc 6(1):31-56 https://doi.org/10.5194/osd-6-31-2009
  2. Beckley BD, Zelensky NP, Holmes SA, Lemoine FG, Ray RD, Mitchum GT, Desai SD, Brown ST (2010) Assessment of the Jason-2 extension to the TOPEX/Poseidon, Jason-1 sea-surface height time series for global mean sea level monitoring. Mar Geod 33(S1):447-471 https://doi.org/10.1080/01490419.2010.491029
  3. Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. J Geophys Res-Oceans 116(C7):JC006759. doi:10.1029/2010JC006759
  4. Cha SC, Moon JH (2018) Pacific sea level variability associated with climate variability from altimetry and sea level reconstruction data. Ocean Polar Res 40(1):1-13 https://doi.org/10.4217/OPR.2018.40.1.001
  5. Cha SC, Moon JH, Song YT (2018) A recent shift toward an El Nino-like ocean state in the Tropical Pacific and the resumption of ocean warming. Geophys Res Lett 45(21):11885-11894 https://doi.org/10.1029/2018GL080651
  6. Church JA, Aarup T, Woodworth PL, Wilson WS, Nicholls RJ, Rayner R, Lambeck K, Mitchum GT, Steffen K, Cazenave A, Blewitt G, Mitrovica JX, Lowe JA (2010) Sea-level rise and variability: synthesis and outlook for the future.In: Church JA, Woodworth PL, Aarup T, Wilson SW (eds) Understanding sea-level rise and variability. Blackwell, Edinburgh, pp 402-419
  7. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4-5):585-602 https://doi.org/10.1007/s10712-011-9119-1
  8. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res-Oceans 118(12):6704-6716 https://doi.org/10.1002/2013JC009067
  9. Hamlington BD, Strassburg MW, Leben RR, Han W, Nerem RS, Kim KY (2014) Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat Clim Change 4(9):782-785 https://doi.org/10.1038/nclimate2307
  10. Hamlington BD, Cheon SH, Thompson PR, Merrifield MA, Nerem RS, Leben RR, Kim KY (2016) An ongoing shift in Pacific Ocean sea level. J Geophys Res-Oceans 121(7):5084-5097 https://doi.org/10.1002/2016JC011815
  11. Hu S, Fedorov AV (2017) The extreme El Nino of 2015-2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dynam 52(12):7339-7357 https://doi.org/10.1007/s00382-017-3531-2
  12. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. P Roy Soc A-Math Phy 454(1971):903-995 https://doi.org/10.1098/rspa.1998.0193
  13. Kidwell A, Jo YH, Yan XH (2014) A closer look at the central Pacific El Nino and warm pool migration events from 1982 to 2011. J Geophys Res-Oceans 119(1):165-172 https://doi.org/10.1002/2013JC009083
  14. Kim Y, Cho K (2016) Sea level rise around Korea: analysis of tide gauge station data with the ensemble empirical mode decomposition method. J Hydro-Environ Res 11:138-145 https://doi.org/10.1016/j.jher.2014.12.002
  15. Landerer FW, Jungclaus JH, Marotzke J (2008) El Nino-Southern Oscillation signals in sea level, surface mass redistribution, and degree-two geoid coefficients. J Geophys Res-Oceans 113(C8):JC004767. doi:10.1029/2008JC004767
  16. Lee HS, Yamashita T, Mishima T (2012) Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Prog Oceanogr 105:67-80 https://doi.org/10.1016/j.pocean.2012.04.009
  17. Lei Y, He Z, Zi Y (2009) Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech Syst Signal Pr 23(4):1327-1338 https://doi.org/10.1016/j.ymssp.2008.11.005
  18. Leuliette EW, Scharroo R (2010) Integrating Jason-2 into a multiple-altimeter climate data record. Mar Geod 33(S1):504-517 https://doi.org/10.1080/01490419.2010.487795
  19. Levine AF, McPhaden MJ (2016) How the July 2014 easterly wind burst gave the 2015-2016 El Nino a head start. Geophys Res Lett 43(12):6503-6510 https://doi.org/10.1002/2016GL069204
  20. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78(6):1069-1080 https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  21. Masters D, Nerem RS, Choe C, Leuliette E, Beckley B, White N, Ablain M (2012) Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2. Mar Geod 35(S1):20-41 https://doi.org/10.1080/01490419.2012.717862
  22. Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Climate 24(15):4126-4138 https://doi.org/10.1175/2011JCLI3932.1
  23. Merrifield MA, Thompson PR, Lander M (2012) Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett 39(13):GL052032. doi:10.1029/2012GL052032
  24. Moon JH, Song YT, Bromirski PD, Miller AJ (2013) Multidecadal regional sea level shifts in the Pacific over 1958-2008. J Geophys Res-Oceans 118(12):7024-7035 https://doi.org/10.1002/2013JC009297
  25. Moon JH, Song YT, Lee H (2015) PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific. J Geophys Res-Oceans 120(12):8229-8237 https://doi.org/10.1002/2015JC011139
  26. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33(S1):435-446 https://doi.org/10.1080/01490419.2010.491031
  27. Wu Z, Huang NE (2004) A study of the characteristics of white noise using the empirical mode decomposition method. P Roy Soc A-Math Phy 460(2046):1597-1611 https://doi.org/10.1098/rspa.2003.1221
  28. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1-41 https://doi.org/10.1142/S1793536909000047
  29. Yeo SR, Yeh SW, Kim KY, Kim W (2017) The role of low-frequency variation in the manifestation of warming trend and ENSO amplitude. Clim Dynam 49(4):1197-1213 https://doi.org/10.1007/s00382-016-3376-0
  30. Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett 39(21):GL053240. doi:10.1029/2012GL053240