DOI QR코드

DOI QR Code

Assessment of Body Condition in Amphibians Using Radiography: Relationship between Bone Mineral Density and Food Resource Availability

방사선 촬영 기법을 이용한 양서류 신체상태 평가: 골밀도와 먹이 자원 가용성 간의 상관 관계

  • Park, Jun Kyu (Department of Biological Science, Kongju National University) ;
  • Do, Yuno (Department of Biological Science, Kongju National University)
  • Received : 2019.10.22
  • Accepted : 2019.11.27
  • Published : 2019.12.31

Abstract

We measured the body composition, including bone mineral density (BMD) and food resource availability using dual energy X-ray absorptiometry and the carbon and nitrogen stable isotope ratios of body condition of 4 anuran species(Hyla japonica, Glandirana rugosa, Pelophylax nigromaculatus, Lithobates catesbeianus) in South Korea. Additionally, the carbon and nitrogen stable isotope ratios were employed to determine the food resource availability of anurans. We figured out the relationship between the body composition, including BMDs and food resource availability. The body composition and BMDs did not differ between male and female while there was difference among the species. Food resource availability and BMDs were the highest in L. catesbeianus, the lowest in H. japonica. BMDs tended to increase with higher food resource availability. Body composition and BMDs, which represent the body condition of an individual, can be used as an ecological indicator to assess the stability of the habitat of anurans.

본 연구에서는 방사선 촬영 기법을 사용하여 국내에 서식하는 무미양서류인 청개구리 (Hyla japonica), 옴개구리(Glandirana rugosa), 참개구리(Pelophylax nigromaculatus), 황소개구리(Lithobates catesbeianus)의 체성분과 골밀도를 분석하였다. 이중 엑스선 촬영 장치(Dual-energy X-ray absorptiometry)를 사용하여 체성분과 골밀도를 측정하였으며 암수 간 차이와 종 간 차이를 파악하였다. 또한 방사선 촬영 기법을 사용한 신체 상태 평가 방법의 효용성을 확인하기 위해 무미양서류 4종의 먹이자원 가용성을 파악하고 신체상태와의 관계를 확인하였다. 신체를 구성하는 성분인 골, 지방, 제지방 비율과 골밀도는 암수 간 차이가 없었지만 무미양서류 4종 간 차이는 있었다. 골밀도와 먹이자원 가용성은 황소개구리가 가장 높았으며 청개구리가 가장 낮았다. 옴개구리와 참개구리의 먹이자원 가용성은 차이는 없었다. 골밀도와 먹이자원 가용성은 유의미한 상관관계를 가졌으며 먹이 상태를 나타내는 질소 안정동위원소비는 골밀도에 의해서만 변화하는 것을 확인하였다. 기회적 포식자인 무미양서류의 먹이 상태 혹은 자원 가용성이 체성분은 물론 골밀도에 영향을 미칠 수 있다. 개체의 신체 상태를 나타내는 체성분과 골밀도는 무미양서류에서 서식지의 안정성을 평가하는 생태지표로서 사용이 가능할 것으로 보인다.

Keywords

References

  1. Behnke, A.R., B. Feen and W. Welham. 1942. The specific gravity of healthy men: body weight$\div$volume as an index of obesity. Journal of the American Medical Association 118: 495-498. https://doi.org/10.1001/jama.1942.02830070001001
  2. Bentley, P. 1984. Calcium metabolism in the Amphibia. Comparative Biochemistry Physiology 79: 1-5. https://doi.org/10.1016/0300-9629(84)90702-3
  3. Berg, R. and R. Butterfield. 1966. Muscle: bone ratio and fat percentage as measures of beef carcass composition. Animal Science 8: 1-11. https://doi.org/10.1017/S000335610003765X
  4. Cashman, K.D. 2006. Milk minerals (including trace elements) and bone health. International Dairy Journal 16: 1389-1398. https://doi.org/10.1016/j.idairyj.2006.06.017
  5. Castellano, S., M. Cucco and C. Giacoma. 2004. Reproductive investment of female green toads (Bufo viridis). Copeia 2004: 659-664. https://doi.org/10.1643/CE-03-182R2
  6. Chen, W., T. Guan, L. Ren, D. He, Y. Wang and X. Lu. 2015. Prehibernation energy storage in Heilongjiang brown frogs (Rana amurensis) from five populations in North China. Asian Herpetological Research 6: 45-50.
  7. Dodd, C.K. 2010. Amphibian ecology and conservation: a handbook of techniques. Disease monitoring and biosecurity, p. 481-505. In: Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, Oxford, England.
  8. Donoghue, S. 1998. Nutrition of pet amphibians and reptiles, p. 148-153. In: Seminars in Avian and Exotic Pet Medicine. W.B. Saunders Co., Philadelphia, Pennsylvania.
  9. Dumont, E.R. 2010. Bone density and the lightweight skeletons of birds. Proceedings of the Royal Society B: Biological Sciences 277: 2193-2198. https://doi.org/10.1098/rspb.2010.0117
  10. Garner, T.W., S. Walker, J. Bosch, S. Leech, J. Marcus Rowcliffe, A.A. Cunningham and M.C. Fisher. 2009. Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118: 783-791. https://doi.org/10.1111/j.1600-0706.2008.17202.x
  11. Girish, S. and S. Saidapur. 2000a. Interrelationship between food availability, fat body, and ovarian cycles in the frog, Rana tigrina, with a discussion on the role of fat body in anuran reproduction. Journal of Experimental Zoology 286: 487-493. https://doi.org/10.1002/(SICI)1097-010X(20000401)286:5<487::AID-JEZ6>3.0.CO;2-Z
  12. Girish, S. and S.K. Saidapur. 2000b. Interrelationship between food availability, fat body, and ovarian cycles in the frog, Rana tigrina, with a discussion on the role of fat body in anuran reproduction. Journal of Experimental Zoology 286: 487-493. https://doi.org/10.1002/(SICI)1097-010X(20000401)286:5<487::AID-JEZ6>3.0.CO;2-Z
  13. Green, A.J. 2001. Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82: 1473-1483. https://doi.org/10.1890/0012-9658(2001)082[1473:MLRMOB]2.0.CO;2
  14. Green, S.L. 2002. Factors affecting oogenesis in the South African clawed frog (Xenopus laevis). Comparative Medicine 52: 307-312.
  15. Hammer, O., D.A. Harper and P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9.
  16. Han, S.H., C.J. Park, D.H. Kim, M.-S. Min and M.C. Gye. 2015. Diet of the Korean Wrinkled Frog (Rana rugosa). Korean Journal of Environmental Biology 33: 338-344. https://doi.org/10.11626/KJEB.2015.33.3.338
  17. Hirai, T. 2004. Diet composition of introduced bullfrog, Rana catesbeiana, in the Mizorogaike Pond of Kyoto, Japan. Ecological Research 19: 375-380. https://doi.org/10.1111/j.1440-1703.2004.00647.x
  18. Hirai, T. and M. Matsui. 2000. Feeding habits of the Japanese tree frog, Hyla japonica, in the reproductive season. Zoological Science 17: 977-982. https://doi.org/10.2108/zsj.17.977
  19. Hopton, M.E., G.N. Cameron, M.J. Cramer, M. Polak and G.W. Uetz. 2009. Live animal radiography to measure developmental instability in populations of small mammals after a natural disaster. Ecological Indicators 9: 883-891. https://doi.org/10.1016/j.ecolind.2008.10.010
  20. Kim, M.S., J.Y. Hwang, O.S. Kwon and W.S. Lee. 2013. Analytical methodology of stable isotopes ratios: sample pretreatment, analysis and application. Korean Journal of Ecology and Environment 46: 471-487. https://doi.org/10.11614/KSL.2013.46.4.471
  21. King, J.D., M.C. Muhlbauer and A. James. 2011. Radiographic diagnosis of metabolic bone disease in captive bred mountain chicken frogs (Leptodactylus fallax). Zoo Biology 30: 254-259. https://doi.org/10.1002/zoo.20322
  22. Liu, X., Y. Luo, J.X. Chen, Y.S. Guo, C.M. Bai and Y.M. Li. 2015. Diet and prey selection of the Invasive American bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetological Research 6: 34-44.
  23. Martini, F., S. Sell, E. Kremling and W. Küsswetter. 1996. Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stems. International Orthopaedics 20: 218-221. https://doi.org/10.1007/s002640050067
  24. Martins, F.M., M. Mdo Oom, R. Rebelo and G.M. Rosa. 2013. Differential effects of dietary protein on early life-history and morphological traits in natterjack toad (Epidalea calamita) tadpoles reared in captivity. Zoo Biology 32: 457-462. https://doi.org/10.1002/zoo.21067
  25. McCoid, M.J. and T.H. Fritts. 1989. Growth and fat body cycles in feral populations of the African clawed frog, Xenopus laevis (Pipidae) in California with comments on reproduction. Southwestern Naturalist 34: 499-505. https://doi.org/10.2307/3671508
  26. McWilliams, D.A. 2008. Nutrition recommendations for some captive amphibian species (Anura and Caudata). The Canadian Association of Zoos and Aquariums Nutrition Advisory and Research Group (GARN-NARG).
  27. Melody, C., B. Griffiths, J. Dyckmans and O. Schmidt. 2016. Stable isotope analysis (${\delta}^{13}C$ and ${\delta}^{15}N$) of soil nematodes from four feeding groups. PeerJ 4: e2372. https://doi.org/10.7717/peerj.2372
  28. Mitchell, A., R. Rosebrough and J. Conway. 1997. Body composition analysis of chickens by dual energy x-ray absorptiometry. Poultry Science 76: 1746-1752. https://doi.org/10.1093/ps/76.12.1746
  29. Novecosky, B.J. and P.R. Popkin. 2005. Canidae volume bone mineral density values: an application to sites in western Canada. Journal of Archaeological Science 32: 1677-1690. https://doi.org/10.1016/j.jas.2005.05.009
  30. Pancharatna, M. and S.K. Saidapur. 1985. Ovarian cycle in the frog Rana cyanophlyctis: A quantitative study of follicular kinetics in relation to body mass, oviduct, and fat body cycles. Journal of Morphology 186: 135-147. https://doi.org/10.1002/jmor.1051860202
  31. Park, S.H., H. Lee and K.-H. Cho. 2018. Diet composition of Japanese tree frog (Hyla japonica) in a rice paddy, South Korea. Ecology Resilient Infrastructure 5: 54-58. https://doi.org/10.17820/eri.2018.5.1.054
  32. Parnell, A. and A. Jackson. 2013. siar: Stable Isotope Analysis in R. R package version 4.2. Available at: https://CRAN.R-project.org/package=siar.
  33. Reed, D.R., A.A. Bachmanov and M.G. Tordoff. 2007. Forty mouse strain survey of body composition. Physiology 91: 593-600.
  34. Shaw, S.D., P.J. Bishop, C. Harvey, L. Berger, L.F. Skerratt, K. Callon, M. Watson, J. Potter, R. Jakob-Hoff and M. Goold. 2012. Fluorosis as a probable factor in metabolic bone disease in captive New Zealand native frogs (Leiopelma species). Journal of Zoo and Wildlife Medicine 43: 549-565. https://doi.org/10.1638/2011-0276R1.1
  35. Sodhi, N.S., D. Bickford, A.C. Diesmos, T.M. Lee, L.P. Koh, B.W. Brook, C.H. Sekercioglu and C.J. Bradshaw. 2008. Measuring the meltdown: drivers of global amphibian extinction and decline. Plos One 3: e1636. https://doi.org/10.1371/journal.pone.0001636
  36. Stuart, S.N., J.S. Chanson, N.A. Cox, B.E. Young, A.S. Rodrigues, D.L. Fischman and R.W. Waller. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786. https://doi.org/10.1126/science.1103538
  37. Sztatecsny, M. and R. Schabetsberger. 2005. Into thin air: vertical migration, body condition, and quality of terrestrial habitats of alpine common toads, Bufo bufo. Canadian Journal of Zoology 83: 788-796. https://doi.org/10.1139/z05-071
  38. R Core Team. 2013. R: A language and environment for statistical computing.
  39. Venesky, M.D., T.E. Wilcoxen, M.A. Rensel, L. Rollins-Smith, J.L. Kerby and M.J. Parris. 2012. Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia 169: 23-31. https://doi.org/10.1007/s00442-011-2171-1
  40. Wright, K. 2001. Diets for captive amphibians, p. 63-72. In: Amphibian Medicine and Captive Husbandry (Wright, K.M. and B.R. Whitaker, eds.). Krieger, Malabar, Florida.
  41. Yoon, I.B., J.I. Kim and S.Y. Yang. 1998. Study on the food habits of Rana nigromaculata Hallowell and Rana plancyi chosenica Okada (Salientia; Ranidae) in Korea. Korean Journal of Environmental Biology 16: 69-76.
  42. Zanden, M.J.V. and J.B. Rasmussen. 2001. Variation in ${\delta}^{15}N$ and ${\delta}^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061