DOI QR코드

DOI QR Code

Analysis of the Concentration of Metal Elements in Freshwater Fish Otolith Using LA-ICP/MS

LA-ICP/MS를 이용한 담수 어류 이석 내 금속 원소 농도 분석

  • Park, Hyun Woo (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Yoon, Suk-Hee (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Park, Jaeseon (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Lim, Bo-Ra (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Lee, Hyeri (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Choi, Jong Woo (Environmental Measurement and Analysis Center, National Institute of Environmental Research)
  • 박현우 (국립환경과학원 환경측정분석센터) ;
  • 윤숙희 (국립환경과학원 환경측정분석센터) ;
  • 박재선 (국립환경과학원 환경측정분석센터) ;
  • 임보라 (국립환경과학원 환경측정분석센터) ;
  • 이혜리 (국립환경과학원 환경측정분석센터) ;
  • 최종우 (국립환경과학원 환경측정분석센터)
  • Received : 2019.11.04
  • Accepted : 2019.11.25
  • Published : 2019.12.31

Abstract

In this study, the possibility of a follow-up study on environmental pollution in domestic freshwater was identified by analyzing fish otoliths using Laser ablation-inductively coupled mass spectrometry (LA-ICP/MS). Fish otolith are known to be affected by the environment in which fish live. As a result, research on this subject is active in many countries; however, this is not the case in Korea. Therefore, in this study, the possibility of tracing environmental pollution using fish otoliths was identified by analyzing the components of metal elements used as indicators for environmental pollution. For the component analysis of metallic elements LA-ICP/MS, which can shorten analysis time by reducing the pretreatment process, was used. Sampling was conducted by dividing the research and the background area and carp, a freshwater species, was selected as the experimental fish species subject. Based on the established LA-ICP/MS conditions, the concentration of the metallic elements in the fish otoliths collected in the research area was 2202.9 mg kg-1, 2.03 times higher than the 1,086.3 mg kg-1 in the background area. All elements except for Li and U, were found to be higher in the research area than in the background area. Compared with the sediment measuring net analysis data, the distribution tendency of Zn, Pb, and Cu in sediment metal element concentrations in the two regions and distribution of metal element concentration in fish otoliths were similarly shown. These results confirm that fish otoliths can be used to track environmental pollutants, such as in sediments.

본 연구는 Laser ablation ICP/MS (이하 LA-ICP/MS)를 이용한 환경오염 추적연구를 위하여 어류 내 이석을 분석하였다. 어류의 이석은 어류가 서식하는 환경에 영향을 받는 것으로 알려져 있어 국외에서는 이를 활용한 연구가 활발하나 국내에서는 이에 대한 연구가 미비한 실정이다. 그래서 본 연구에서는 환경오염의 지표로 사용되는 금속 원소의 성분 분석을 통하여 어류 이석을 이용한 환경오염 추적 가능성을 파악하고자 하였다. 또한 금속 원소의 성분 분석을 위해서는 전처리 과정을 줄여 분석 시간을 단축시킬 수 있는 것으로 알려진 LA-ICP/MS를 이용하였다. 시료채취는 연구지역과 배경지역으로 나누어 실험을 진행하였고, 실험 어종은 담수종인 잉어를 선정하였다. LA-ICP의 분석 최적 조건을 정립하기 위하여 이석 표준물질인 FEBS-1을 이용하여 9개 금속 원소(Li, Mg, Mn, Cu, Zn, Sr, Ba, Pb, U)의 정확도와 정밀도를 확인하였다. 정립한 조건을 이용하여 실제시료를 분석한 결과, 연구지역에서 채집한 어류 이석 내 금속 원소 성분의 총 농도가 2202.9 mg kg-1으로 배경 지역의 1086.3 mg kg-1보다 2.03배 높게 측정되었다. 원소별로는 Li과 U을 제외한 모든 원소가 연구 지역이 배경지역보다 높게 나타났다. 그리고 퇴적물 측정망 분석 자료와 비교한 결과, Zn, Pb, Cu가 두 지역의 퇴적물 금속 원소 농도 분포와 어류 이석 내 금속 원소 농도 분포 경향이 유사하게 나타났다. 이러한 결과로 보아 어류 내 이석은 퇴적물과 같이 환경오염원을 추적하는 데 활용할 수 있다는 것을 확인하였다.

Keywords

References

  1. Abduriyim, A. and H. Kitawaki. 2006. Applications of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) to Gemology. Gems & Gemology 42: 98-118. https://doi.org/10.5741/GEMS.42.2.98
  2. Aria, T., A. Kotake and K. Morita. 2004. Evidence of downstream migration of Sakhalin taimen, Hucho perryi, as revealed by Sr : Ca ratios of otolith. Ichthyological Research 51: 377-380. https://doi.org/10.1007/s10228-004-0230-x
  3. Brothers, E.B. 1987. Methodological approaches to the examination of otoliths in aging studies. p.319-330. In: The Age and growth of fish (Summerfelt, R.C. and G.E. Hall, eds.). The Iowa State University Press, Ames, Iowa.
  4. Campana, S.E. and J.D. Neilson. 1985. Microstructure of Fish Otoliths. Canadian Journal of Fisheries and Aquatic Science 42(5): 1014-1032. https://doi.org/10.1139/f85-127
  5. Campana, S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechnism and application. Marine Ecology Progress Series 188: 263-297. https://doi.org/10.3354/meps188263
  6. Daverat, F., L. Lanceleur, C. Pecheyran, M. Eon, J. Dublon, M. Pierre, J. Schafer, M. Baudrimont and S. Renault. 2012. Accumulation of Mn, Co, Zn, Rb, Cd, Sn, Ba, Sr, and Pb in the otoliths and tissues of eel (Anguilla Anguilla) following long-term exposure in an estuarine environment. Science of The Total Environment 437: 323-330. https://doi.org/10.1016/j.scitotenv.2012.06.110
  7. Elsdon, T.S. and B.M. Gillanders. 2004. Fish otolith chemistry influenced by exposure to multiple environmental variables. Journal of Experimental Marine Biology and Ecology 313: 26-284.
  8. Gauldie, R.W., C.E. Thacker and L. Wang. 1998. Movement of water in fish otoliths. Gems & Gemology, Part A 120: 551-556.
  9. Jessop, B.M., C.H. Wang, W.N. Tzeng, C.F. You, J.C. Shiao and S.H. Lin. 2012. Otolith Sr:Ca and Ba:Ca may give inconsistent indications of estuarine habitat use for American eels (Anguilla rostrata). Environmental Biology of Fisheries 93: 193-207. https://doi.org/10.1007/s10641-011-9905-0
  10. Kalish, J.M. 1991a. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory maintained Australian salmon (Arripis trutta). Marine Biology 110: 37-47. https://doi.org/10.1007/BF01313090
  11. Kalish, J.M. 1991b. 13C and 18O isotopic composition disequi libria in fish otoliths: metabolic and kinetic effects. Marine Ecology Progress Series 75: 191-203. https://doi.org/10.3354/meps075191
  12. Kenney, B.P., A. Klaue, J.D. Blum, C.L. Folt and K.H. Nislow. 2002. Reconstructing the lives of fish using Sr isotopes in otoliths. Gems & Gemology 59: 925-929.
  13. Kim, S.K., M.K. Lee, J.H. Ahn, S.W. Kang and S.H. Jeon. 2005. The effects of mean grain size and organic matter contents in sediments on the nutrients and heavy metals concentrations. Korean Society of Environmental Engineers 27(9): 923-931.
  14. Kim, J.S., M.J. Shin, J.E. Lee and E.W. Seo. 2009. Heavy metal contents in tissues of Carassius auratus in Andong and Imha reservoir. Journal of Life Science 19(11): 1562-1567. https://doi.org/10.5352/JLS.2009.19.11.1562
  15. Limburg, K.E. 1995. Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Marine Ecology Progress Series 119: 25-35. https://doi.org/10.3354/meps119025
  16. Limburg, K.E., B.D. Walther, Z. Lu, G. Jackman, J. Mohan, Y. Walther, A. Nissling, P.K. Weber and A.K. Schmitt. 2015. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia. Journal of Marine Systems 141: 167-178. https://doi.org/10.1016/j.jmarsys.2014.02.014
  17. Milton, D.A. and S.R. Chenery. 2001. Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal of Experimental Marine Biology and Ecology 264: 47-65. https://doi.org/10.1016/S0022-0981(01)00301-X
  18. Mounicou, S., S. Frelon, A. Le Guernic, Y. Eb-Levadoux, V. Camilleri, L. Fevrier, S. Pierrisnard, L. Carasco, R. Gilbin, K. Mahe, H. Tabouret, G. Bareille and O. Siomon. 2019. Use of fish otoliths as a temporal biomarker of field uranium exposure. Science of The Total Environment 690: 511-521. https://doi.org/10.1016/j.scitotenv.2019.06.534
  19. National Institute of Environmental Research. 2017. Establishment for Pollitang Screening and Tracing Methods in Multimedia System for Responding to Environmental Issue (2017). 16-17.
  20. National Institute of Environmental Research. 2018. Establishment for Pollitang Screening and Tracing Methods in Multimedia System for Responding to Environmental Issue (2018). 18-20.
  21. Nesbitt, R.W., T. Hirata, I.B. Butler and J.A. Milton. 1998. UV laser ablation ICP-MS: Some applications in the earth sciences. Geostandards Newsletter 20: 231-243.
  22. Reeder, R.J. 1983. Crystal chemistry of the rhombohedral carbonates. Reviews in Mineralogy 11: 1-47.
  23. Riva-Rossi, C., M.A. Pascual, J.A. Babaluk and N.M. Halden, 2007. Intrapopulational variation in anadromy and reproductive lifespan in Santa Cruz River Rainbow Trout. Journal of Fish Biology 70: 1780-1797. https://doi.org/10.1111/j.1095-8649.2007.01449.x
  24. Selleslagh, J., A. Echard, C. Pecheyran, M. Baudrimont, J. Lobry and F. Daverat. 2016. Can analysis of Platichthys flesus otoliths provide relevant data on historical metal pollution in estuaries? Experimental and in situ approaches. Science of The Total Environment 557-558: 20-30. https://doi.org/10.1016/j.scitotenv.2016.03.014
  25. Shin, M.J., Y.M. Park, J.E. Lee and E.W. Seo. 2010. Heavy metal contents in tissues of fishes in Andong and Imha reservoirs. Journal of Life Science 20(9): 1378-1384. https://doi.org/10.5352/JLS.2010.20.9.1378
  26. Stevenson, D.K. and S.E. Campana. 1992. Otolith microstructure examination and analysis. Canadian Special Publication of Fisheries and Aquatic Sciences. 117-126.
  27. Wang, H., X. Liu, K. Nan, B. Chen, M. He and B. Hu. 2017. Sample pre-treatment techniques for use with ICP-MS Hyphenated techniques for elemental speciation in biological samples. Royal Society of Chemistry 32: 58-77.
  28. Yang, Y.S., S.Y. Kang, S.A. Kim and S.S. Kim. 2008. Relationship between oxygen isotopic composition of Walleye Pollock (Theragra chalcogramma) otoliths and seawater temperature. Ocean and Polar Research 30(3): 249-258. https://doi.org/10.4217/OPR.2008.30.3.249