DOI QR코드

DOI QR Code

영산강, 섬진강 수계 내 주요 저수지에 대한 동물플랑크톤 군집 구조의 유사성 분석

Similarity of Zooplankton Community Structure among Reservoirs in Yeongsan-Seomjin River Basin

  • Ko, Eui-Jeong (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Gu-Yeon (Department of Science Education, Kyungnam University) ;
  • Joo, Gea-Jae (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University)
  • 투고 : 2019.10.31
  • 심사 : 2019.11.28
  • 발행 : 2019.12.31

초록

본 연구에서는 영산강, 섬진강 유역에서 호소 간의 동물 플랑크톤의 군집구조 특성이 만수면적에 따라 분류된 소·중·대형의 저수지에서 종 수 및 개체수가 유의한 차이를 보이는 것을 확인하였다. 윤충류보다 지각류에서 민감도가 높은 것을 확인하였으며, 특히 두 분류군 모두 양의 상관 관계를 나타냈지만, 지각류에서 조사지점이 늘어날수록 개체수 증가가 확연한 것을 알 수 있었다. 또한 네트워크 분석 개념을 활용한 고유벡터 중심성 및 그룹화 분석을 사용하여 호소 간의 동물플랑크톤 군집구조를 비교했을 때, 만수면적에 따른 대·중·소형 호소 내에서도 지리적 특성과 미소환경 공간의 차이점을 구별할 수 있었다. 따라서 이러한 특성을 볼 때, 네트워크 분석은 담수 동물플랑크톤 군집구조 분석에 있어 만수면적 크기, 지리적 특성, 미소환경 특성을 반영할 수 있는 것으로 고려된다. 마지막으로, 네트워크 분석은 다양한 군집분석을 간소화하며 시각화를 통한 직관적 이해를 돕는 데 유용할 것이다.

Our study was based on the long-term surveys with respect to the major reservoirs located in the Yeongsan and Seomjin river basins. A total of 45 survey sites have been surveyed four times a year from 2008 to 2017. We identified 166 zooplankton species, including 127 rotifers, 26 cladocerans, and 13 copepods. Mean population density and species number of small reservoirs were higher than those of mid and large reservoirs. Considering outliers exceeding the 90th percentile between species occupancy and mean abundance, 10 of 11 habitat generalists were rotifers, and Bosmina longirostris was the only cladoceran. Habitat specialist consisted of three species of rotifers and emerged from one to three survey sites. According to the modularity results, it was found that the survey sites covering the entire river basins were characterized into five groups, which was similar to the classification by maximum water surface areas(MWSA). The result of the eigenvector centrality showed that the size of MWSA had a greater impact on the similarity of zooplankton community structure between reservoirs than the difference in distance between reservoirs. In the case of survey points in near dam or estuary bank of Juam and Youngsan reservoirs, modularity class were separated from other internal survey points of those. Given that the zooplankton interactions may contribute to freshwater functions more than species diversity. These topological features provide new insight into studying zooplankton distribution patterns, their organization and impacts on freshwater-associated function.

키워드

참고문헌

  1. Barberan, A., S.T. Bates, E.O. Casamayor and N. Fierer. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. Multidisciplinary Journal of Microbial Ecology 6(2): 343-351.
  2. Blondel, V.D., J.L. Guillaume, R. Lambiotte and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10): 10008 https://doi.org/10.1088/1742-5468/2008/10/P10008
  3. Einsle, U. 1993. Crustacea, Copepoda, Calanoida und Cyclopoida. Susswasswefauna von Mitteleuropa, vol. 8, part 4-1. Gustav Fisher Verlag, Stuttugart.
  4. Jordano, P., J. Bascompte and J.M. Olesen. 2006. The ecological consequences of complex topology and nested structure in pollination webs, p. 179-199. In: Plant-pollinator interactions: from specialization to generalization (Waser, N.M. and J. Ollerton, eds.). University of Chicago Press, Chicago, IL, USA.
  5. Jun, B.H. and C.G. Han. 2013. A method to decide the number of additional edges to integrate the communities in social network by using modularity. Journal of The Korea Society of Computer and Information 18(7): 101-109. https://doi.org/10.9708/jksci.2013.18.7.101
  6. Kairesalo, T., I. Tatrai and E. Luokkanen. 1998. Impacts of waterweed (Elodea canadensis Michx) on fish-plankton interactions in the lake littoral. Internationale Vereinigung fur Theoretische und Angewandte Limnologie: Verhandlungen 26(4): 1846-1851.
  7. Keppeler, E.C. 2003. Abundance of zooplankton from different zones (pelagic and littoral) and time periods (morning and night) in two Amazonian meandering lakes. Acta Scientiarum: Biological Sciences 25(2): 287-297.
  8. Kim, H.W., G.H. La, K.S. Jeong, J.H. Park, Y.J. Huh, S.D. Kim, J.E. Na, M.H. Jung and H.Y. Lee. 2010. Assessing the plankton dynamics in lakes and reservoirs ecosystem in the southwestern parts of Korea. Korean Journal of Environmental Biology 28(2): 86-94.
  9. Kim, S.J., H.J. Song, T.J. Park, M.Y. Hwang, H.S. Cho, K.D. Song, H.J. Lee and Y.S. Kim 2015a. Survey on lake environments in the Yeongsan and Seomjin river basinsbased on 10 lakes such as Hadong and Sangsa. Journal of Korean Society on Water Environment 31(6): 665-679. https://doi.org/10.15681/KSWE.2015.31.6.665
  10. Kim, S.K., D.G. Hong, M. Kang, K.L. Lee, H.Y. Lee, G.J. Joo and J.Y. Choi. 2015b. Zooplankton community dynamic in lentic freshwater ecosystems in the Nakdong river basin. Korean Journal of Environmental Ecology 29(3): 410-420. https://doi.org/10.13047/KJEE.2015.29.3.410
  11. Kim, Y.M., S.W. Hong, Y.S. Lee, K.C. Oh, G.Y. Kim and G.J. Joo. 2017. Co-occurrence patterns of bird species in the world. Korean Journal of Ecology and Environment 50(4): 478-482. https://doi.org/10.11614/KSL.2017.50.4.478
  12. Koste, W. 1978. Rotatoria. Die Radertiere Mitteleuropes begrunder von Max Voigt, 2nd edn., Vol. 1. Textband, p. 673, Vol. 2. Tafelband, p. 234, Borntraeger, Stuttgart.
  13. Lampert, W. and U. Sommer. 1993. Limnookologie. Georg Thieme, Stuttgart, Germany.
  14. Newman, M. 2010. Networks: an introduction. Oxford University Press, UK.
  15. Oh, H.J., K.H. Chang, D.I. Seo, G.S. Nam, E.H. Lee, H.G. Jeong, J.D. Yoon and J.M. Oh. 2017. Zooplankton community as an indicator for environmental assessment of aquatic ecosystem: application of rotifer functional groups for evaluating water quality in eutrophic reservoirs. Journal of Environment Impact Assessment 26(6): 404-417.
  16. O'hara, R.B. and D.J. Kotze. 2010. Do not log-transform count data. Methods in Ecology and Evolution 1: 118-122. https://doi.org/10.1111/j.2041-210X.2010.00021.x
  17. Pandit, S.N., J. Kolasa and K. Cottenie. 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90(8): 2253-2262. https://doi.org/10.1890/08-0851.1
  18. Pinel-Alloul, B., J.A. Downing, M. Perusse and G. Codin-Blumer. 1988. Spatial heterogeneity in freshwater zooplankton: variation with body size, depth, and scale. Ecology 69(5): 1393-1400. https://doi.org/10.2307/1941636
  19. Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897-899. https://doi.org/10.1126/science.184.4139.897
  20. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacean). Records of the Australian Museum Supplement 1: 1-132. https://doi.org/10.3853/j.0812-7387.1.1983.103
  21. Van der Gast, C., A.W. Walker, F.A. Stressmann, G.B. Rogers, P. Scott, T.W. Daniels, M.P. Carroll, J. Parkhill and K.D. Bruce. 2011. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. Multidisciplinary Journal of Microbial Ecology 5(5): 780-791.
  22. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251. https://doi.org/10.2307/1218190
  23. Zafarani, R., M.A. Abbasi and H. Liu. 2014. Social media mining: an introduction. Cambridge University Press.
  24. Zingel, P. 1999. Pelagic ciliated protozoa in shallow eutrophic lake: community structure and seasonal dynamics. Archiv fur Hydrobiologie 146: 495-511. https://doi.org/10.1127/archiv-hydrobiol/146/1999/495