DOI QR코드

DOI QR Code

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H. (Department of Electrical Engineering, University of Baghdad) ;
  • Zahawi, Bashar (Department of Electrical Engineering and Computer Science, Khalifa University) ;
  • Atkinson, David J. (School of Engineering, Newcastle University)
  • Received : 2018.12.26
  • Accepted : 2019.05.18
  • Published : 2019.09.20

Abstract

A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.

Keywords

References

  1. A. Shahin, H. Moussa, I. Forrisi, J.-P. Martin, B. Nahid-Mobarakeh, and S. Pierfederici, “Reliability improvement approach based on flatness control of parallel connected inverters,” IEEE Trans. Power Electron., Vol. 32, No. 1, pp. 681-692, Jan. 2017. https://doi.org/10.1109/TPEL.2016.2527778
  2. X. Wei, G. Zhu, J. Lu, and X. Xu, “Instantaneous currentsharing control scheme of multi-inverter modules in parallel based on virtual circulating impedance,” IET Power Electron., Vol. 9, No. 5, pp. 960-968, 2016. https://doi.org/10.1049/iet-pel.2014.0932
  3. P. M. Le, X. H. T. Pham, H. M. Nguyen, D. D. V. Hoang, T. D. Nguyen, and D. N. Vo, “Line impedance estimation based adaptive droop control method for parallel inverters,” J. Power Electron., Vol. 18, No. 1, pp. 234-250, Jan. 2018. https://doi.org/10.6113/JPE.2018.18.1.234
  4. K. Li, Z. Dong, X. Wang, C. Peng, F. Deng, J. Guerrero, and J. Guerrero, “New strategy for eliminating zero-sequence circulating current between parallel operating three-level NPC voltage source inverters,” J. Power Electron., Vol. 18, No. 1, pp. 70-80, Jan. 2018. https://doi.org/10.6113/JPE.2018.18.1.70
  5. Y. Wang, F. Wang, Y. Lin, and T. Hao, “Sensorless parameter estimation and current-sharing strategy in two-phase and multiphase IPOP DAB DC-DC converters,” IET Power Electron., Vol. 11, No. 6, pp. 1135-1142, 2018. https://doi.org/10.1049/iet-pel.2017.0860
  6. H. S. Jung, J. M. Yoo, S. K. Sul, H.-J. Lee, and C. Hong, “Parallel operation of inverters with isolated DC link for minimizing sharing inductor,” IEEE Trans. Ind. Appl., Vol. 53, No. 5, pp. 4450-4459, Sep./Oct. 2017. https://doi.org/10.1109/TIA.2017.2695444
  7. K. Imaie, S. Ito, and S. Ueda, "PWM control method of multiple inverters for Maglev," Conference Record of the Power Conversion Conference, pp. 55-60, 1993.
  8. J. Ewanchuk and J. Salmon, “Three-limb coupled inductor operation for paralleled multi-level three-phase voltage sourced inverters,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1979-1988, May 2013. https://doi.org/10.1109/TIE.2012.2221112
  9. A. Somani, R. K. Gupta, K. K. Mohapatra, and N. Mohan, “On the causes of circulating currents in PWM drives with open-end winding AC machines,” IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3670-3678, Sep. 2013. https://doi.org/10.1109/TIE.2012.2208430
  10. G. Gohil, L. Bede, R. Teodorescu, T. Kerekes, and F. Blaabjerg, “An integrated inductor for parallel interleaved three-phase voltage source converters,” IEEE Trans. Power Electron., Vol. 31, No. 5, pp. 3400-3414, May 2016. https://doi.org/10.1109/TPEL.2015.2459134
  11. B. M. Jassim, B. Zahawi, and D. J. Atkinson, “Control of parallel connected three-phase pwm converters without inter-module reactors,” J. Power Electron., Vol. 15, No. 1, pp. 116-122, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.116
  12. M. Hua, H. Hu, Y. Xing, and Z. He, “Distributed control for AC motor drive inverters in parallel operation,” IEEE Trans. Ind. Electron., Vol. 58, No. 12, pp. 5361-5370, Dec. 2011. https://doi.org/10.1109/TIE.2011.2112320
  13. S. Tolani and P. Sensarma, “An instantaneous average current sharing scheme for parallel UPS modules,” IEEE Trans. Ind. Electron., Vol. 64, No. 12, pp. 9210-9220, Dec. 2017. https://doi.org/10.1109/TIE.2017.2711539
  14. X. Sun, Y.-S. Lee, and D. Xu, “Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 844-856, May 2003. https://doi.org/10.1109/TPEL.2003.810867
  15. S. K. Mazumder, K. Acharya, and M. Tahir, “Joint optimization of control performance and network resource utilization in homogeneous power networks,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1736-1745, May 2009. https://doi.org/10.1109/TIE.2009.2012458
  16. B. M. H. Jassim, D. J. Atkinson, and B. Zahawi, “Modular current sharing control scheme for parallel-connected converters,” IEEE Trans. Ind. Electron., Vol. 62, No. 2, pp. 887-897, Feb. 2015. https://doi.org/10.1109/TIE.2014.2355813
  17. K. Kim, D. Shin, H.-J. Kim, and J.-P. Lee, “Analyzing and designing a current controller for circulating current reduction in parallel three-phase voltage-source inverters,” J. Power Electron., Vol. 18, No. 2, pp. 502-510, Mar. 2018. https://doi.org/10.6113/JPE.2018.18.2.502
  18. J. Matas, M. Castilla, L. G. D. Vicuna, J. Miret, and J. C. Vasquez, “Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order generalintegrator scheme,” IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 2993-3002, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2082003
  19. J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam, “Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid,” IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 689-701, Mar. 2011. https://doi.org/10.1109/TPEL.2010.2091685
  20. D. G. Holmes, T. Lipo, B. McGrath, and W. Y. Kong, “Optimized design of stationary frame three phase AC current regulators,” IEEE Trans. Power Electron., Vol. 24, No. 11, pp. 2417-2426, Nov. 2009. https://doi.org/10.1109/TPEL.2009.2029548
  21. D. G. Holmes, B. P. McGrath, and S. G. Parker, “Current regulation strategies for vector-controlled induction motor drives,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3680-3689, Oct. 2012. https://doi.org/10.1109/TIE.2011.2165455
  22. M. Monfared, S. Golestan, and J. M. Guerrero, “Analysis, design, and experimental verification of a synchronous reference frame voltage control for single-phase inverters,” IEEE Trans. Ind. Electron., Vol. 61, No. 1, pp. 258-269, Jan. 2014. https://doi.org/10.1109/TIE.2013.2238878