DOI QR코드

DOI QR Code

Analysis on Flexural Behavior of Spiral Steel Pipe Considering Residual Stress Developed by Pipe Manufacturing

조관에 의한 잔류 응력을 고려한 스파이럴 강관의 휨 거동 분석

  • Kim, Kyuwon (School of Civil and Environmental engineering, Yonsei University) ;
  • Kim, Jeongsoo (Dept. of Infrastructure Safety Research, KICT) ;
  • Kang, Dongyoon (Structure Department, Soosung Engr. and Consulting) ;
  • Kim, Moon Kyum (School of Civil and Environmental engineering, Yonsei University)
  • 김규원 (연세대학교 건설환경공학과) ;
  • 김정수 (한국건설기술연구원 인프라안전연구본부) ;
  • 강동윤 (수성엔지니어링 구조부) ;
  • 김문겸 (연세대학교 건설환경공학과)
  • Received : 2019.04.08
  • Accepted : 2019.08.26
  • Published : 2019.08.31

Abstract

A spiral steel pipe has been more used widely as a structural member as well as transport pipeline because the pipe can be manufactured continuously, consequently more economical than the conventional UOE pipe. As improved pipe manufacture technology makes spiral pipes to have high strength and to have larger diameters, the spiral pipes have been recently used as long distance transport pipeline with a large diameter and strain-based design is thus required to keep structural integrity and cost effectiveness of the spiral pipe. However, design codes of spiral pipe have not been completely established yet, and structural behaviors of a spiral pipe are not clearly understood for strain-based design. In this paper, the effects of residual stresses due to the spiral pipe manufacture process are investigated on the flexural behavior of the spiral pipe. Finite element analyses were conducted to estimate residual stresses due to the manufacturing process for the pipes which have different forming angle, thickness, and strength, respectively. After that, the results were used as initial conditions for flexural analysis of the pipe to numerically investigate its flexural behaviors.

스파이럴 강관은 기존 UOE 강관에 비해 경제적이며 연속적으로 강관 제작이 가능해 수송관뿐만 아니라 구조부재로 사용이 점차 확장되고 있다. 최근 제작기술의 발달로 스파이럴 강관의 고강도 및 대형화가 가능하게 됨에 따라 대규모 장거리 수송용 파이프라인에도 적용이 시도되고 있고, 이로 인해 스파이럴 강관의 구조적 건전성과 경제성 확보를 위한 변형률 기반 설계가 요구된다. 그러나 이를 뒷받침하기 위한 스파이럴 강관의 설계 기준 전반이 제시되지 않은 실정이고, 구조적 거동에 대한 명확한 규명이 이뤄지지 못하고 있다. 본 논문은 스파이럴 파이프의 조관 과정에서 발생되는 잔류응력이 스파이럴 파이프의 휨 거동에 미치는 영향을 분석하였다. 조관으로 인한 잔류응력 평가를 위해 조관 성형각, 두께, 강도를 달리하여 스파이럴 파이프의 유한요소해석을 수행하고, 해석결과를 파이프 휨 해석에 대한 초기 조건으로 반영하여 수치해석적으로 휨 거동 변화를 조사하였다.

Keywords

References

  1. Cho, W., Kim, K., and Cho, K., "Evaluation on strain capacity of pipe for strain-based design", Trends in metals and materials engineering, 25 , 44-56, (2012)
  2. Det Norske Veritas, Submarine pipeline systems, DNV-OS-F101, (2010)
  3. Canadian Standard Association, Oil and gas pipeline systems, CSA Z662-11, (2011)
  4. Reinke, T., Sadowski, A. J., Ummenhofer, T., and Rotter, J. M., "Large scale bending tests of spiral welded steel tubes", EUROSTEEL 2014, (2014)
  5. Zimmerman, T., Timms, C., Xie, J., and Asante, J., "Buckling resistance of large diameter spiral welded linepipe", In 2004 International Pipeline Conference, 365-373, (2004)
  6. Kim, W., Kim, K., and Im, S., "Finite element analysis for manufacturing spiral pipes", Proceeding of the KSME conference, KSME, 1847-1851, (2005)
  7. Lee, J.H., Kim, T.M., and Kim, M.K., "Finite element analysis for prediction of residual stress from manufacturing spiral pipe", Proceeding of the KSCE conference, KSCE, 53-54, (2015)
  8. Rhee, J.H., Kim, T.M., and Kim, M.K., "Predict the structural performance of the sprial pipe through tree-dimensional finite element analysis", Proceeding of the KSCE conference, KSCE, 53-54, (2016)
  9. van Es, S.H., Gresnigt, A.M., Vasilikis, D., and Karamanos, S.A., "Ultimate bending capacity of spiral-welded steel tubes-Part I: Experiments", Thin-Walled Structures, 102, 286-304, (2016) https://doi.org/10.1016/j.tws.2015.11.024
  10. Vasilikis, D., Karamanos, S.A., van Es, S.H., and Gresnigt, A.M., "Ultimate bending capacity of spiral-welded steel tubes-Part II: Predictions", Thin-Walled Structures, 102, 305-319, (2016) https://doi.org/10.1016/j.tws.2015.11.025
  11. POSCO, Influencing factors on structural performance of spiral pipe for energy transport, 2015Z003, (2018)
  12. Kim, K., Yeom, K., Oh, K., Kim, W., "Stress and displacement analysis of Arctic frost-heave with gas pipeline using finite element method", KIGAS, 19(5), 47-53, (2015)
  13. Jeon, K., Forming of thin metal plate: theory and practice, Bando press, 85-116, (1993)
  14. Hosford, W.F. and Caddell, R.M., Metal forming, Prentice-Hall (1983)
  15. Ktari, A., Antar, Z., Haddar, N., and Elleuch, K., "Modeling and computation of the three-roller bending process of steel sheets", Journal of Mechanical Science and Technology, KSME, 26(1), 123-128, (2012) https://doi.org/10.1007/s12206-011-0936-4