DOI QR코드

DOI QR Code

왜도 된 연흔모양 매트의 해빈 안정화 효과 수치해석

Numerical Analysis of the Beach Stabilization Effect of an Asymmetric Ripple Mat

  • 조용준 (서울시립대학교 토목공학과)
  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul)
  • 투고 : 2019.05.24
  • 심사 : 2019.07.10
  • 발행 : 2019.08.31

초록

해빈 안정화를 위해 거치되는 강성 구조물의 규모는 해빈의 자기 치유 능력이 구현되는 해빈 대순환 과정이 훼손되지 않는 범위에서 결정되어야 하나 최근 지나치게 대형화 되어 광폭 잠제도 빈번하게 차용되고 있는 실정이다. 이러한 시각에 기초하면 Irie et al.(1994)가 제안한 왜도 된 연흔모양 매트는 규모가 크지 않다는 점에서 현재 선호되는 광폭잠제의 대안이 될 수 있을 것으로 판단된다. 전술한 왜도 된 연흔모양 매트의 해빈 안정화 효과는 매트의 유수 단면 축소부에서 강제되는 와류가 run-down 시 외해방향으로 이송되는 표사를 얼마나 효과적으로 포획할 수 있느냐에 따라 결정되는 것으로 추정된다. 본 논문에서는 이러한 가설을 확인하기 위해 수치모의를 수행하였다. 수치모형은 Navier-Stokes 식과 물리기반 지형모형으로 구성하였으며, 모의 결과 왜도 된 연흔모양 매트 정점부에서 강제된 와류에 의해 포획된 표사가 해안 방향으로 이송되는 등 왜도 된 연흔모양 매트의 해빈 안정화 효과를 구성하는 주요 기작과 해빈 안정화 효과를 확인할 수 있었다.

Even though the scale of hard structures for beach stabilization should carefully be determined such that these structures do not interrupt the great yearly circulation process of beach sediment in which the self-healing ability of natural beach takes places, massive hard structures such as the submerged breakwater of wide-width are frequently deployed as the beach stabilization measures. On this rationale, asymmetric ripple mat by Irie et al. (1994) can be the alternatives for beach stabilization due to its small scale to replace the preferred submerged breaker of wide-width. The effectiveness of asymmetric ripple mat is determined by how effectively the vortices enforced at the contraction part of flow area over the mat traps the sediment moving toward the offshore by the run-down. In order to verify this hypothesis, we carry out the numerical simulations based on the Navier-Stokes equation and the physically-based morphology model. Numerical results show that the asymmetric ripple mat effectively capture the sediment by forced vortex enforced at the apex of asymmetric ripple mat, and bring these trapped sediments back to the beach, which has been regarded to be the driving mechanism of beach stabilization effect of asymmetric ripple mat.

키워드

참고문헌

  1. Cho, Y.J. and Kim, I.H. (2019). Preliminary study on the development of platform for the selection of an optimal beach stabilization measures against the beach erosion-centering on the yearly sediment budget of the Mang-Bang beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 28-39 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.1.28
  2. Cho, Y.J., Kim, I.H. and Cho, Y.J. (2019). Numerical analysis of the grand circulation process of Mang-Bang beach-centered on the shoreline change from 2017. 4. 26 to 2018. 4. 20. Journal of Korean Society of Coastal and Ocean Engineers, 31(3), 101-114 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.3.101
  3. Cho, Y.J., Kim, K.S. and Ryu, H.S. (2008). Suspension of Sediment over Swash Zone. Journal of The Korean Society of Civil Engineers, 28(B), 95-109 (in Korean).
  4. Cho, Y.J. (2019). Physics-based bed morphology model for the estimation of erosion rate of nourished beach. J. of Coastal Engineering (submitted).
  5. Dean, R.G. and Dalrymple, R.A. (2002). Coastal Processes with Engineering Applications, Cambridge University Press, New York, NY.
  6. Fredsoe, J. and Deigaard, R. (1992). Mechanics of Coastal Sediment Transport. World Scientific.
  7. Irie, I., Ono, N., Hashimoto, S., Nakamura, S. and Murakami, K. (1994). Control of cross-shore sediment transport by a distorted ripple mat. Proc. of ICCE 1994, 2070-2084.
  8. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation 238 toolbox for the open-source CFD library: Open-$Foam^{(R)}$, International 239 Journal for Numerical Methods in Fluids, 70(9), 1073-1088. https://doi.org/10.1002/fld.2726
  9. Jacobsen, N.G., Fredsoe, J. and Jensen, J.H. (2014). Formation and development of a breaker bar under regular waves. Part 1: Model description and hydrodynamics. Coastal Engineering, 88, 182-193. https://doi.org/10.1016/j.coastaleng.2013.12.008
  10. Longuet-Higgins, M.S. (1983). Wave set-up, percolation and undertow in the surf zone. Proceedings of the Royal Society of London A: Mathematical. Physical and Engineering Sciences, 390(1799), 283-291.
  11. Losada, I.J., Gonzalez-Ondina, J.M., Diaz, G. and Gonzalez, E.M. (2008). Numerical simulation of transient nonlinear response of semi-enclosed water bodies: model description and experimental validation. Coastal Engineering, 55(1), 21-34. https://doi.org/10.1016/j.coastaleng.2007.06.002
  12. Nielsen, P. (1979). Some basic concepts of wave sediment transport, Ser. Paper 20, Inst Hydrodyn Hydraul Eng, Tech Univ. Denmark.
  13. Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. World Scientific.
  14. Roulund, A., Sumer, B., Fredsoe, J. and Michelsen, J. (2005). Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics, 534, 351-401. https://doi.org/10.1017/S0022112005004507
  15. Van Rijn, L.C. (1986). Applications of sediment pickup function. J. Hydraulic Eng., ASCE, 112(9), 867-874. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:9(867)
  16. Vanoni, V.A. (editor) (1975). Sedimentation engineering. ASCE Manuals and Reports on Engineering Practice, No. 54, ASCE, New York NY, 1975.