
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, Aug. 2019 4212
Copyright ⓒ 2019 KSII

An Asynchronous-Driven Node.js Based
Intermediary-free Direct Deal Distribution
Platform Converged with Cloud Service

SongYeon Lee1 and JongHo Paik2*

1 Department of Computer Science, Seoul Women’s University
Seoul, Republic of Korea

[e-mail: sylee8466@swu.ac.kr]
2 Department of Software Convergence, Seoul Women’s University

Seoul, Republic of Korea
[e-mail: paikjh@swu.ac.kr]

*Corresponding author: JongHo Paik

Received February 27, 2019; revised April 26, 2019; accepted June 13, 2019;
published August 31, 2019

Abstract

In this paper, a design and implementation for direct deal distribution platform is proposed
to bypass the complex traditional distribution structure of agricultural market, as one of the
fields where distribution patterns have changed. In the case of domestic agricultural
distribution, demand and supply are unstable since the sales market is excessively
concentrated in the designated wholesale market. Besides sales must go through multiple
stages of distribution leading to problems in freshness and stability of agricultural products
and downward pressure on profit margins for producers.

To solve the above mentioned issues, we propose a cloud service convergence direct deal
distribution platform based on asynchronous-driven Node.js. The proposed platform can
facilitate a variety of direct trading functions and also access to visualization information
related to agricultural products, which may increase user confidence at an intermediary-free
direct transactions platform. First, we describe the requirements of intermediary-free direct
transactions of agricultural products and transaction entities. Next the database structure and
transaction functions are designed and then implemented according to those requirements.
Finally, an API based cloud convergence service structure is designed to provide the analyzed
information to ensure a trustworthy system.

Keywords: Transaction platform, Node.js, cloud service, MVC pattern, server platform

A preliminary version of this paper was presented at ICONI 2018, and was selected as an outstanding paper.
This work was supported by a sabbatical year and research grant from Seoul Women's University(2019).
This manuscript is an addition based on the first author's master's thesis from Seoul Women's University.

http://doi.org/10.3837/tiis.2019.08.022 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4213

1. Introduction

As we enter the fourth industrial revolution, the distribution industry is undergoing a
fundamental change. The sources of value and competitiveness are changing from “goods
service transaction intermediation” to “knowledge and information about production
consumption” [1]. Among other signs of this trend, the shift to online trading is making
progress in the agricultural market. In the domestic agricultural distribution sector, demand
and supply for the domestic agricultural distribution are unstable since the sales market is
excessively concentrated in the designated wholesale market. Besides sales must go through
multiple stages of distribution leading to problems in freshness and stability of agricultural
products and downward pressure on profit margins for producers.

In response to this trend, a direct deal distribution platform is needed to directly connect
producers and consumers and provide new value-producing services [2]. The features and
transaction functions of each transaction entities must be defined. In a new form of direct deal
distribution platform, there is an operating entity that manages the platform but does not
generate revenue by engaging in transactions. By this reason, the database design must
facilitate simple transactions between a producer and a consumer, and an intuitive user
interface without distractions such as advertising. In order to reflect the above requirements, it
is necessary to provide a function to directly confirm all sales and purchases, and related
transactions.

Whenever developing a new distribution platform, however, it is essentially needed to
verify stable service functions and to reduce additional costs due to modification and
implementation of existing service functions. Recently, there is a growing interest in how to
utilize a service platform that is already stable in providing commercial services when
developing a new distribution platform. In this paper, we propose a design and implementation
for cloud service convergence direct deal distribution platform based on Node.js with the
characteristic of low cost and easy development. Particularly, Node.js is known to be faster
I/O response than PHP/Apache server. And also Node.js can use npm (node package manager)
which provides easy access to a vast set of open source library modules.

This paper is organized into five sections. In addition to this introduction, Section 2 explains
the related works of the proposed platform. Section 3 presents the design methodology of the
proposed platform. And section 4 explains the implementation method of the proposed
platform based on Node.js. Finally conclusion is drawn in section 5.

2. Related Works

2.1 Node.js based server platform
Node.js is an asynchronous event-based runtime that runs in JavaScript, and is designed for
scalable network application [3]. Since Node.js’s runtime operates in a non-blocking I/O
method, it does not happen that the process is deadlocked by processing multiple processes at
the same time. According to the characteristic of JavaScript, the asynchronous I/O method can
register a callback to each function and call a function as an event which can allocate a
function to a variable. It is very effective for development of scalable systems [4, 5, 6].

4214 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

Fig. 1. Configuration and operating sequence of each component in Node.js

Node.js is designed to use multiple processes in a single thread to handle multiple tasks, so it
is not necessary to add threads to implement asynchronous I/O operation. Fig. 1 shows the
configuration and operating sequence of each component for asynchronous operation in
Node.js. Asynchronous I/O can be implemented through JavaScript compilation via the V8
engine and through the thread pool and event loop of the libuv library. Owing to this
asynchronous operation, Node.js is suitable for servers where I/O operations are frequently
performed, rather than high CPU processing.

One aspect that makes Node.js extensibile is the use of the npm module which provides easy
acces to a vast set of open source library modules. For another reason, existing server
platforms such as Apache, nginx, and IIS are required to build a special web server engine.
However, in the case of Node.js, there is no need to build a extra server engine because the
web server is built in it. That is why Node.js is accessible and also scalable when constructing
server platform.

In Node.js, both MongoDB(NoSQL) and MySQL(SQL) are commonly used as databases.
In the case of MongoDB, unlike existing relational databases, there is no concept of table or
column. Instead, a certain set of data in the form of document in a collection is stored in
correspondence with a specified field. Unlike MySQL, it does not define attribute information
for fields in a collection that acts as a table in the database, thus making it difficult to perform
transactions or JOIN functions, but it is often used for scalability and ease of use. In addition,
there is no restriction on the format of the data to be stored, and it is possible to store it in the
JSON format. Therefore, MongoDB is suitable for servers that require some extent of
consistency of data, but do not need the strict definition of relational database format.

2.2 Cloud based convergence service
In recent years, cloud computing services have been introduced in a variety of industries and
public sectors, in order to find a survival strategy through cost reduction and to create new
value by providing new services. In particular, various industries find that it reduces the
maintenance burden on the IT infrastructure and the large initial investment cost as well.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4215

Cloud services not only save cost but also increase the agility of the enterprise by enabling
rapid creation of information services with pre-built professional services or service
components available on demand. As a result, research on cloud services and converged
service structures has been conducted in various fields [7, 8].

In order to utilize the convergence cloud service from an existing system, an application
programming interface (API), a technology for client-to-agent connection, is required. In the
cloud environment, the agent processor is connected to the existing platform through API to
enable the provision of new services. The cloud agent is a processor in a virtual space, that the
user need not worry about, but executes tasks just like ones own computer.

The cloud agent may respond with data representing visualizations for delivery to another
module (closer to the user) which generates the actual visualization.

3. Design of cloud service convergence direct deal distribution platform
based on Node.js

3.1 Architecture of the proposed platform
The Architecture of the proposed platform server is shown in Fig. 2. The platform is

implemented in Node.js, which is an event-based asynchronous-driven server platform that
can support many user connections at the same time. The proposed platform consists of
cost-effective Node.js based on OMS system, which can share both social data analysis and
cost-predictable platform. In the Node.js based server, MongoDB, which has high scalability
and high processing performance, is used as a NoSQL type database. However, in the
proposed platform, Oracle Database is used for secure transaction data including personal
information. In this regard, although Node.js with a high speed of I / O processing is
asynchronous, it requires a synchronous processing when interworking with the database
especially when using Oracle Database.

The direct deal distribution platform basically performs the function of ordering the
products registered by the producer and the basic order management system required when
making transactions.

Fig. 2. The Architecture of the Proposed Direct Deal Distribution Platform based Node.js Server

4216 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

In addition, it provides information about forecasted prices and demand for agricultural
products and analyzes data based on direct transaction details, and obtains data on the quality
or preference of the product based on the SNS analysis data. These visualization of analyzed
data is performed using the agent provided by the existing service platform.

The implemented platform is adapted to the MVC model which is a software design pattern
that is often used when developing server client system. Especially, the Model is run on the
Oracle Database, View is provided by EJS/html, and Controller consists of Node.js’s routing
module. For the view configuration, we use the EJS template engine to dynamically display
the data processed by the server. If server only shows static display, there is no need to use the
template engine that makes up the view, however, in this platform due to various transactions
the client side have to be organized with template engine.

As the size of the server grows, the number of routes that must be provided increases, and
the increased route pages can lead to management complexity. Particularly, it is effective to
separate and manage the functions to be provided through the routing module because the
function to be provided differs according to the transaction subject in the direct deal
distribution platform. Therefore, the implemented direct deal distribution platform provides
the routing function for each page using the “express” web framework module of Node.js. A
routing page is commonly used only for a main page that provides overall information of
agricultural products using API agent before the transaction entities access their respective
pages, and all other routing pages are separated by transaction entities.

3.2 MVC Model
In the MVC pattern, the user interface and the business logic are separated from each other, so
that the maintenance of each component can be performed without affecting each other’s role.
Generally, an application in the Model area is responsible for data control.

Therefore, database storage and data query processing are independent of Controller and
View. View takes the data received from model’s query and displays it to the client-side
browser. At this time, rather than the view requesting a query to the model directly if the
controller requests a query to the model, the result of the request is transmitted to the View and
finally data is displayed to the user. That is, the Controller acts as an intermediary between the
data (Model) and the user interface (View). The MVC model is illustrated in Fig. 3, which
consists of Oracle DB for Model, EJS and html for View, and Node.js server for Controller.

Fig. 3. Relationship between Model, View, Controller

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4217

First, when a user makes an HTTP request for data inquiry and the browser transmits it, the
controller routes the HTTP request according to the condition of the router defined at the
Node.js server. Next, according to the routing condition, the controller requests data
processing from the model, receives the result from the model, and transmits the result to the
view. Finally, view transmits the rendered view to the user's browser by reflecting the received
data.

In other words, Oracle Database, acting as a model, independently performs the task of
processing the data requested by the controller and maintaining the integrity of the data
regardless of the state change of the controller and the view. Therefore, controller and EJS
(view) and Oracle model all can be independently modified without affecting each other.

3.2.1 Model : Design of Database Structure
The data model designed in this paper is a logical data model, and the data model of the
proposed direct transaction platform is designed to be applied to Oracle Database.

Table 1. Requirements for direct deal distribution between producer and consumer
Functional

Classification Function Details Detail Requirements

Member
Information

Definition of required
membership information by

transaction entity

The company information and the personal
information of the person
in charge should be collected

Product
Information

Definition of information
about products registered by

the producer

Detailed transaction should be specified so
that consumer can make purchasing decisions

Transaction
Information

Definition of cart and order
information

Information of the product to be ordered and
the trading partner's membership information

should be included
Define order/shipping /
check information for

ordered goods

Checking products should be made based on
shipping information

The data model should reflect the basic functions related to the characteristics of the direct
transactions.

The requirements are defined in Table 1. First, the basic functions comprise member
information collection, product specification and transaction function. The producer and the
consumer can apply for the subscription based on their business information to use the
platform and once approved by the administrator, the platform is available.

The producer directly registers the goods to be sold on the platform, and the consumer
decides the purchase based on the registered goods. The information about the goods to be
traded shall be specified in detail to provide everything the purchaser needs to make a decision.
When the transaction occurs, information about the goods to be traded must be included with
the transaction information so that accurate transaction details are provided to both the
producer and the consumer.

The shipping information about the ordered product is stored according to the standard
specified with the product registration, and the consumer can request the inspection item only
for the goods that have been shipped.

4218 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

3.2.2 View : Design of EJS/HTML based Bootstrap View
Node.js can use different template engine modules to display the rendered screen to the client.
Through the template engine, HTML-based static code can be rendered with JavaScript. The
template engine that can be used in Node.js varies, and the template engine applied in this case
is EJS is often used with Node.js and can be combined with HTML syntax in one file. With
EJS, dynamic code can be implemented using syntax such as variable declarations, loops, and
conditional statements that could not be implemented in HTML alone.

In terms of screen composition, Bootstrap is a framework that helps to simplify
development using libraries in frontend development. It provides a template based on HTML
and CSS, and is composed of a grid-based responsive web so it is also optimized for mobile
screen [9].

3.2.3 Controller : Design of page routing according to transaction entities
The transaction entities of the designed direct deal distribution platform are divided into the
producer and consumer. Therefore, the routing module is divided into the modules used the
producer and consumer in common those used by the consumer, and those used by the
producer. Basically, the routing module branches the URI or HTTP request through the user's
web browser, with the help of the “Express” module. Fig. 4 shows the sequence diagram for
routing the client’s request to the server.

As shown in Fig. 4, when the server starts for the first time, configuration information such
as various database information, routing information, and server port information is loaded
into the main server file. When the URI-based HTTP request is sent by the client's browser, the
main server searches the registered routing information according to the Route Loader and
forwards the request processing command to the corresponding routing module. Upon
completion of the processing, the routing module delivers the result view to the client through
the “response” object or redirects to a specific URL.

Fig. 4. Routing sequence diagram according to the request of the client

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4219

4. Implementation of cloud service convergence direct deal distribution
platform based on Node.js

The direct deal distribution platform is developed in the Windows 10 Pro environment and
the version of Node.js is v8.11.4 LTS with npm version 5.6.0. To link the database to the
Node.js server, Oracle Database 11g Express Edition Release 11.2.0.2.0 version was used. The
circulation data analysed with gathered agricultural data which are displayed on the main
screen of the direct deal distribution platform is provided from RSN Co.,Ltd.

4.1 Model : Oracle DBMS
In order to secure transaction data and personal information from clients, the platform must be
linked with the Oracle database. To link the Oracle DB with node.js, the “node-oracledb”
module has to be installed in the Node.js server. Fig. 5 shows the detailed database
specification to securely access the Oracle DB.

The structure of the database implemented based on the requirements defined in the Model
design is shown in Fig. 6. The database is composed of a total of five tables: the member
information (T_MEMBER), the product information (T_PRODUCT), the order header
information (T_ORDER_HEAD), the shopping cart information (T_BASKET), and the order
detail, or product itemization (T_ORDER_DETAIL).

Fig. 5. The Oracle DB specification

Fig. 6. The structure of implemented database

4220 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

4.2 View: HTML5 & EJS
In order for the controller (Node.js’s routing module) to render HTML data, the EJS template
is used. When the data received through the post method data is rendered through the EJS
template, the array values received from the arbitrary array can be put into the posts array
through for and forEach statement. The screen thus rendered is shown in Fig. 7.

Fig. 7. The main screen of producer
When sending data from the client to the server in the post method, if the names of the

dynamically generated tags are duplicated, only the last-set value is transmitted as the post
value. To resolve this problem, set the name of the tag to array and send it. The array basically
joins the data with commas but if the client input contains "," the value entered by the client
may cause an error when splitting on the server. Therefore, before transmission, you must call
the “getArray()” function and add a "/" mark as a delimiter to make it exactly split.

4.3 Controller: Node.js Server
The routing structure of the platform as implemented using the Express module of Node.js is
shown in Fig. 8. The display of the visualization module and access to the corresponding page
by transaction entity takes place in the main page. In the main screen, sign in and register are
done in different routing pages for the producer and the consumer, and the producer’s or
consumer’s main screen after sign in is different according to the assigned routing page.

On the producer routing page, the main functions provided are order management functions
such as product registration, order status inquiry, and shipping registration. Then the consumer
routing page provides functions such as product ordering, shopping cart registration, order
status view, and product inspection management.

The detailed functions and data definitions of the routing page are shown in Fig. 9 and Fig.
10, respectively. Fig. 9 shows the functions and data definitions in the producer merchandise
Management menu. With the product information entered by the producer, information such
as the production area and the product classification is stored in the database in advance with
the code chosen by the producer, and the stored data can be utilized when analyzing
ecommerce statistics.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4221

The functions and data definitions in the order status inquiry menu are shown in Fig. 10.
Database tables used for order registration and query are T_ORDER_HEAD and
T_ORDER_DETAIL. The order number is generated at the time the consumer makes an order
decision and the order detail is stored together with the product information (product code,
product name, product price, order quantity, destination information).

Fig. 8. The structure of a routing page

At this time, the initial shipment and inspection status for the order issue are combined. The

membership number stored at the member information table is referenced in order to identify
the customer placing the order and the producer of the product, and the corresponding member
number acts as an identifier at the time of order inquiry.

 Fig. 9. The detailed functions and data definitions of product register and management

4222 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

Fig. 10. The detailed functions and data definitions of order status inquiry

On the consumer’s order status page, the order information for the goods can be displayed.

If the goods have not yet been shipped, the order can be canceled and withdrawn. The order is
withdrawn by updating the order status item of T_ORDER_HEAD and the order item is
retained, but with a “deleted” status to maintain a record of the order. On the screen, only the
valid order items are displayed according to the order status.

When an order event occurs according to the order number generation rule, the order
number registered in the order table must be executed after the inquiry about the stored order
item. However, there is a problem due to the asynchronous logic of Node.js, namely that the
inquiry about the order item and the registration of the order item may not proceed
sequentially, especially when there are several items to register.

Therefore, when Oracle DB or other database systems must be used in node.js, query
execution such as select, insert, delete, update may not be done in sequence as
the developer does not intend according to the asynchronous processing logic of node.js.
Therefore, it is necessary to apply the async method to the function related to the db to perform
the sequential query and each query has to be declared as a function when a user's post request
requires multiple query execution. Fig. 11 shows the flowchart of multiple query execution
process in the Node.js server.

After declaring a function for each query execution, call the function in the specified order
that they should be executed in async.waterfall by putting a db connection object and a
callback as parameters [10]. In this case, db connection and release also have to be included in
the async.waterfall module.

In the proposed platform, the order function in OMS requires multiple query execution. In
order to perform the OMS function every item of order data, shipment or inspection data must
be managed by sequence number made with fixed rules.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4223

Fig. 11. The Flowchart of a Multiple Query Execution Process in Node.js Platform

In the shopping cart function, especially, a wholesaler can add multiple items registered by

the producer. When the wholesaler orders all items that were in the shopping cart, the order
procedure such as insert and update must be done in the regular sequence with the generated
order number.

The order number must be generated using the selection result from the database and then
query statements such as select, insert and update have to be executed in sequence.

4.4 Agent-based API in cloud service convergence environment
Fig. 12 shows the detailed configuration of the agent for applying the analysis service to the
cloud service convergence direct deal distribution platform proposed in this paper. A data
collection and analysis server exists outside the Node.js server. After performing a series of
operations on the server, the visualization result is displayed in the form of API on the
platform of the Node.js server [11]. In the analysis server, collected and analyzed data on SNS
data related to agricultural products, distribution articles, etc., are stored in a seperate database,
and then processed by the second data processing. Once the secondary processing of the data is
completed, the collected data and processed data are stored again in the database, and the
analysis data is derived from the real-time analysis platform based on the data.

4224 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

Fig. 12. Detailed configuration of agent for applying analysis service

Analyzed and processed data is called in API format, and when the corresponding API is
called in the main page of the Node.js server, the API engine displays the visualization of the
transmitted data. At this time, the visualization module is provided together with the analysis
data so that the analyzed data can be displayed in the correct form.The main page of the
Node.js direct transaction platform with the agent API provided is shown in Fig. 13 [12].

Fig. 13. Node.js direct deal platform main screen with agent API applied

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019 4225

5. Conclusion
In this paper, we proposed the design and implementation of cloud service convergence direct
deal distribution platform based on Node.js for agricultural products. Agricultural distribution
is under pressure to change by the trend of distribution 4.0, especially in the direction of
sharing knowledge and information about production and consumption. In the domestic
agricultural market, due to its concentration on the traditional wholesale market, demand and
supply are unstable and the price competitiveness declines, therefore the distribution structure
needs to be improved. To improve the distribution structure, we proposed direct transaction
for agricultural products. At this time, in order to provide a competitive direct deal distribution
platform, a variety of transaction information services related to agriculture are provided to the
user along with the direct transaction function for user confidence.

In order to implement such a cloud convergence direct deal distribution platform, a Node.js
based server platform is designed and implemented based on the MVC pattern, and the
requirements of direct transactions of agricultural products are defined. And also, a new
structure of database and user interface design is required for implementation of
intermediary-free direct transactions.

We described the design of the platform with Oracle Database as the Model, EJS as the
View and Express module as the Controller. Based on this routing structure, the screens of the
Node.js platform are presented as implementation results. In addition, we analyzed and
designed the API based cloud convergence service structure for the related distribution
information service which can provide trustworthiness to the users in the direct transactions of
agricultural products. We then presented the structure and screen of the platform applying the
API.

The cloud-based direct deal distribution platform presented in this paper enables direct trade
between a producer and a consumer, facilitating provision of agricultural products at a
reasonable price without going through a complex distribution structure. In addition, it can
increase the interest and confidence in the use of the platform by providing the trading partner
with a wide range of information about transactions or products in the related field. If a new
distribution service is provided as a Node.js based server platform to which the agent API is
applied, it is expected to be applicable to the development of a platform that is easy to maintain
and has a verified cloud-based service integrated with the platform.

References
[1] E-Mart Distribution Industry Research Institute, 2018 distribution industry outlook, 2017. 11.
[2] Sang Tae Kim, “A Study on the Design and Development of a Mobile Convergence Real-Time

Distribution Platform,” Ph.D Thesis Yeungnam University, 2017.
[3] Node.js. https://nodejs.org.
[4] Ioannis K. Chaniotis, Kyriakos-Ioannis D. Kyriakou, Nikolaos D. Tselikas, “Is Node.js a viable

option for building modern web applications? A performance evaluation study,” Journal
Computing Archive, Vol.97 Issue 10, pp.1023-1044, 2015. Article (CrossRef Link).

[5] Magnus Madsen, Frank Tip, Ondřej Lhoták, “Static analysis of event-driven Node.js JavaScript
applications,” in Proc. of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp.505-519, 2015.
Article (CrossRef Link).

https://nodejs.org/
https://doi.org/10.1007/s00607-014-0394-9
https://doi.org/10.1145/2858965.2814272

4226 Lee et al. : An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform
Converged with Cloud Service

[6] Daniele Bonetta, Luca Salucci, Stefan Marr, “GEMs : Shared-Memory Parallel Programming for
Node.js,” in Proc. of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 531-547, 2016.
Article (CrossRef Link).

[7] Kwang Kyu Seo, “Analysis of Technical Factors for Multidisplinary Cloud Service Model based
on Use Case,” Society of Korea Industrial and Systems Engineering, vol. 10, no. 10, pp. 545-550,
2012. Article (CrossRef Link).

[8] Jeong-Yeop Kim and Eun-Ju Kim, “Public Sector Cloud Computing Adoption Policy and Status,”
Communications of the Korean Institute of Information Scientists and Engineers, Vol. 32, No. 2,
pp. 32~39, 2014. Article (CrossRef Link).

[9] Bootstrap. https://getbootstrap.com/.
[10] Node.js. https://github.com/nodejs
[11] RSN Co.,Ltd, “Local SW commercialization social data API specification,” 2018.
[12] Song Yeon Lee, “Design and Implementation of Cloud Service Convergence Direct Deal

Distribution Platform Based on Node.js,” Master’s thesis, Seoul Women’s University, 2019.

SongYeon Lee received the B.S and M.S. degrees in Computer Science from Seoul
Women's University, Korea, in 2017 and 2019 respectively. She is currently working toward
the Ph.D. degree in the Department of Computer Science from Seoul Women's University.
Her research interests are in the areas of web-based platform design, IoMT platform design
and recommendation system design based on machine learning as well.

JongHo Paik received the B.S., M.S., and Ph.D. degrees in the school of Electrical and
Electronic Engineering from Chung-Ang University, Seoul, Korea, in 1994, 1997, and 2007,
respectively. He was a Director with Advanced Mobile Research Center at Korea Electronics
Technology Institute (KETI) by 2011. Since 2011, he is currently an associate professor in
the department of Software Convergence, Seoul Women’s University, Seoul. His research
interests are in the areas of web-based communication, software testing, wireless/wired
communications system design, video communications system design and system
architecture for realizing advanced digital communications system and for advanced mobile
broadcasting networks as well.

https://doi.org/10.1145/2983990.2984039
https://doi.org/10.14400/JDPM.2012.10.10.545
http://www.kiise.or.kr/academy/board/publishList2.fa?MENU_ID=060500
https://getbootstrap.com/
https://github.com/nodejs

