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Abstract 
 

Software product lines (SPLs) are complex software systems by nature due to their common 
reference architecture and interdependencies. Therefore, any form of evolution can lead to a 

more complex situation than a single system. On the other hand, software product lines are 

developed keeping long-term perspectives in mind, which are expected to have a considerable 
lifespan and a long-term investment. SPL development organizations need to consider 

software evolution in a systematic way due to their complexity and size. Addressing new user 

requirements over time is one of the most crucial factors in the successful implementation SPL. 
Thus, the addition of new requirements or the rapid context change is common in SPL 

products. To cope with rapid change several researchers have discussed the evolution of 

software product lines. However, for the evolution of an SPL, the literature did not present a 

systematic process that would define activities in such a way that would lead to the rapid 
evolution of software. Our study aims to provide a requirements-driven process that speeds up 

the requirements engineering process using social network sites in order to achieve rapid 

software evolution. We used classification, topic modeling, and sentiment extraction to elicit 
user requirements. Lastly, we conducted a case study on the smartwatch domain to validate 

our proposed approach. Our results show that users’ opinions can contain useful information 

which can be used by software SPL organizations to evolve their products. Furthermore, our 
investigation results demonstrate that machine learning algorithms have the capacity to 

identify relevant information automatically. 
 

 

Keywords: Software product line evolution, Social network sites, Requirements-driven, 

Architecture design, classification, machine learning 
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1. Introduction 

Software Product Line Engineering (SPL) is one of the most important paradigms for the 

development of software systems. The SPL is “a set of software-intensive systems that share a 
common, managed set of features satisfying the specific needs of a particular market segment” 

[1]. Different abstraction levels are required to be deemed both in SPL and its derived products. 

On SPL level, the reference architecture is built to address the commonalities while the 

variabilities are defined to address product-specific requirements. There are a number of 
reasons that trigger the evolution of SPLs. The evolution of SPL can happen on three various 

levels [2, 3]; 1) When a set of new SPL features are added or deleted, it leads to the evolution 

of SPLs. Additionally, SPLs can be merged if SPLs became a similar system over time [2]. 
The Split of SPLs can also lead to its evolution when some parts of an SPL are evolved in a 

different direction over time [3]. 2) When some set of products or a new product is added into 

an SPL or deleted the old deprecated one, then it triggers SPL evolution as mentioned in [4]. 3) 
When some change occurs in the core asset level, meaning when a new requirement is added, 

deleted or modified then these changes have to reflect in SPL products. Fig. 1 shows the level 

of evolutions with strategies and the cause of evolution. According to Seva Maye [5], the 

evolution in software is triggered due to the emergent of needs from its user. According to the 
author, 67 percent of software evolution happens due to user new demands. The SPL products 

must be evolved continuously to address the current demands of its end-users. Hence, the 

addition of emerging requirements are a common symptom of software evolution in SPL. To 
cope with rapid change, we propose a requirements-driven SPL evolution process that 

employs Social Network Sites (SNS) to get rapid feedback from its end-users and then present 

a methodology to create and evolve SPL’s reference architecture. Therefore, our evolution 
strategy is a proactive strategy triggered by user new demands. In summary, the literature did 

not present a systematic process that would define activities in such a way that would lead to 

the rapid evolution of SPLs. 

 
Fig. 1.  SPL evolution strategies with respect to trigger and level of evolution [47] 

 

        Mainly, the contribution of this work is threefold. First, we present a process for the rapid 

evolution of SPLs, where we use SNS as a platform to extract user requirements and propose 
an architecture design methodology to reflect rapid changes to the SPL products. Second, we 

investigated users’ opinions related  to smartwatch domain and categorized them into bug 

reports, new feature demands, and quality attributes. Finally, we applied supervised Machine 
Learning (ML) algorithms to see up to what extent software related opinions can be classified 

automatically into bug reports, new feature demands, and quality attributes (non-functional 

requirements). We also apply topic modeling to see whether it helps to elicit requirements or 
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not. We extract sentiment of users’ opinions to see overall mode of users for our dataset. This 

paper is organized as follow: Section 2 discuss related work relevant to our research. Section 3 
discuss the proposing approach in detail, in Section 4 we conducted a case study to validate 

our approach. In Section 5,  we discuss threats to the validity of this study while in Section 6, 

discuss conclusion remarks of this paper. 

 2. Related Work  

Software evolution always remained a challenging job for the research community. The 
research [10] presented a taxonomy for requirements-driven evolution of SPL systems. The 

authors have presented a foundation for the identification of SPL requirements to support 

evolution. The authors of studies [11, 12] have used Twitter feeds and user comments 

respectively to get instant feedback as requirements to evolve software systems. The authors 
just provided a mechanism to get requirements from Twitter feeds and user comments but did 

not discuss the architecture. The rapid evolution of SPL requires both a fast approach to get 

instantaneous feedback and appropriate architecting methodology to achieve evolution. The 
study [13] has proposed a development process for building adaptive software architecture. 

The process did not consider the evolution of SPLs at all and did not address the requirements 

engineering phase. Jiang et.al [14] proposed an approach for requirements evolution from an 
economic perspective. The authors have examined many online reviews and combined the 

techniques of machine learning, opinion mining, and text clustering with a utility-oriented 

econometric model to find system aspects related to software marketing and sales for the 

revising requirements. Furthermore, their approach was useful for system requirement 
analysts by suggesting economically valuable requirements. Itezel et.al [15] conducted 

research that automatically analyze textual messages from app store reviews, user forums, and 

open source software mailing-lists. The authors applied some NLP (Natural Language 
Processing) techniques to filter out unnecessary data then applied automatic classification 

techniques and text mining techniques user comments into various categories. Furthermore, 

the authors used 40872 comments from OpenOffice community for automatic categorization. 

Wei et.al [16] presented an approach for eliciting evolutionary requirements by investigating 
online reviews using various techniques of syntactic relation-based propagation approach, 

user satisfaction analysis, and S-GN. The authors’ presented methodology helped software 

developers with finding evolutionary requirements related to software revenue. Marc et.al [17] 
presented a framework that combined user feedback and monitoring data in web and mobile 

context to support continuous requirements elicitation. The user feedback mechanisms allow 

end-users to express their problems, experiences, and opinions, while monitoring brings 
valuable information about runtime events. Noor et.al [18] proposed an approach to aid 

requirements reuse. The proposed approach used NLP and information retrieval techniques to 

determine user requirements. The authors extracted thirty-two software reviews for online 

learning software which were compiled by experts. Fuzzy C-Means clustering and Semantic 
Analysis with Singular Value Documentation were used to cluster the similar review 

documents. Souza et.al [19] discussed the evolution requirements that specify the ripple effect 

of change of one requirement to other requirements when certain conditions apply. The 
authors proposed a technique to model such kind of requirements and to operationalize them at 

runtime to achieve runtime adaptability. This approach permitted to explicit modeling the 

changes to other requirements models in response to certain term and conditions like 
requirements failures. Guzman et al. [50] used app stores to elicit user requirements. The 

authors analyzed 2,560 app reviews written by users from eight countries. Perini [51] 
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proposed a tool that enables a data-driven software engineering process. The tool can collect 

user feedback from SNS, analyze and decide about the collected feedback for software 
evolution plan. Morales-Ramirez et al. [52] proposed a process to elicit user requirements 

from online discussions. The authors used linguististic technique based on speech acts for the 

analyis of discussions with the ultimate goal of discovering requirements-relevant information. 

The authors classified messages into Features and Others with F-measure 0.81 and 0.84 
respectively. 

3. Proposed Approach 

SPLs need to be evolved quickly to respond to the emerging demands of its end-users. 

Therefore, we present an approach that collects user feedback from SNS periodically. The 

collected corpus is then interpreted as requirements using a number of  NLP and ML 
techniques. Then the requirements are categorized into variability and commonality. Based on 

the variability and commonality, the variability model is then identified and finally, a 

reference architecture is built. Fig. 2 shows a global overview of our process. Our process has 
three phases: phase 1) Requirements engineering 2) Feature Modeling 3) Reference 

architecture designing. Our requirements elicitation process (❶), is a cyclic process where we 

get new requirements on every iteration. If new requirements are identified and decided to be 
added into variability model (❷), then the adaptive architecture (❸) becomes aware of 

variability model change and configures itself to reflect newly added requirements in its 

reference architecture. 

 
Fig. 2.  Proposed Approach: SPL architecture evolution approach based on SNS user feedbacks 

2.1 Requirements Elicitation Phase 

The needs of users are rapidly changing over time and SPL organizations have to address those 

needs promptly. Otherwise, the users will look for alternatives that could harm the SPL 

organizations financially. Therefore, SPL organizations have to search for fast ways to get 
feedback from their users in order to address their current demands. SNS have enabled a huge 

population of end-users of any software product to openly share their concerns and 
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experiences. It also provides a way for millions of users across the globe to share their 

experiences and problems through a real-time status update. This feedback can be collected 
and processed to help SPL developers to interpret users’ requirements, uncover bugs, and plan 

the evolution of their software system.  

      We have conducted primary studies [6, 7] to know the suitability of SNS to get user 
requirements. Our studies revealed that SNS have a number of benefits to use as a platform to 

extract user requirements including a quick response from users, access worldwide users, 
continuous user follow-up, and cost-effectiveness. However, extracting requirements from the 

collected corpus still remained a big challenge. We employ a number of NLP techniques along 

with ML techniques to fully utilize the corpus to get user requirements (Fig. 2 ❶). The 
techniques including topic modeling, opinion classification, and sentiment analysis are 

utilized to identify the user concerns raised in software-relevant feedback. In this paper, we 

only implement sentiment analysis, topic modeling, and classification to elicit user 

requirements. After elicitation of user requirements, the requirements are then analyzed in 
order to determine commonality and variability along with the verification of identified 

requirements. For requirements elicitation, we extract user opinion from Facebook and Twitter 

for smartwatch domain. The opinions are classified by applying supervised ML techniques. 
The details of how to elicit user requirements are described in the data analysis phase of our 

case study. 

2.2 Feature Modeling Phase 

When requirements are elicited and analyzed, then the Feature Model (FM) is built manually. 

A number of techniques are presented both by academia and industries to manage the 

variability [8].  We have decided to use Common Variability Language (CVL) [9] to model the 
features due to some reasons: it does not need a complex formalism and offers a base model to 

be represented along with variability, it provides the capability of variability addition into the 

base model without remodeling it. Fig. 3 shows an overview of how CVL works. 

 

 
 

Fig. 3.  CVL approach overview (adopted from [9]) 

The CVL is composed of three components: the variability model, the base model, and the 
resolution model. A specific product can be produced by utilizing CVL execution which is 
consuming CVL model. The base model represents concrete elements for producing various 

products of an SPL. The variability and commonality of SPL are represented using the 

variability model. The variability model is composed of three parts: the variation points (VP), 

Object Constraint Language (OCL), and variability specification tree (VSpec tree). Resolution 
model shows the specific configuration of an SPL where each VSpec tree is resolved.  Fig. 4 

shows an example of the variability model, a resolution model, variation points, base model 

and resolved model for our smartwatch case study. 
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Fig. 4.  Variability model(top left), resolution model(top right), variation points(center), base 

model(bottom left) and realization or resolved model(bottom right) 

 

 The variation points connect VSpecs to the elements of the base model influenced by the 
variability. The variation points also tell us what elements of the variability model are added, 
modified or removed. We have mentioned three variation points that lead to the change in the 

base model. These are ObjectExistence, ObjectSubstitution,and Value assignment ( Fig. 4 and 

Fig. 12). The OCL put a constraint on the elements of VSpec tree, e.g., X implies Y tells that if  

X is realized to true, Y must also be realized to true. For instance, the location feature in VSpec 
tree (Fig. 4) have a frequency as a constraint on it. The location feature is responsible to 

provide a location for smartwatch user for tracking her/his position, which can be realized 

either by GPS or WiFi variant. Tracking by GPS is more precise but costly because it 
consumes more battery of smartwatch device. Therefore, if the location by GPS is decided to 

be false, it will be removed from the configuration. 

2.3 Reference Architecture 

There are a number of motivations to evolve  SPL systems including a change in the system 

context, a change in system resource, or emerging requirements from its users. Therefore, the 

system has to evolve to reflect those changes. Users’ emerging demands over time are the 
major motivations of evolution in our study. After elicitation of user requirements (from SNS) 

and feature modeling, we design a reference architecture to reflect elicited requirements. 

Our proposed approach presents a  methodology to design a system in such a way that will 
evolve over time. Fig. 5 shows an overview of our methodology. The variability model has to 

evolve in every iteration of the requirements elicitation step as shown in Fig. 2 (❶). When the 

variability model is modified, then the changes are propagated into whole architecture. This 

phase takes the variability model as input and the result is a specific product architecture that 

comprises of required components for its adaptation. 

Variability modeling takes place in domain engineering phase which has an important role 
in the production of specific products from SPL. In our approach, the below steps should be 

followed to construct the adaptive architecture. 
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Fig. 5.  Requirements architecture design strategy 

 

Step 1: Identify user requirements from SNS corpus(phase  ❶ in Fig. 2). 

Step 2: Identify the VSpec and its constraint in elements of VSpec tree. 

Step 3: Constructing a base model 

Step 4: Realizing the VSpec tree and base model with the help of VP. 

All steps are interrelated with one another. The first step provides a foundation for the 
second step and the third step takes the result of the second step as input to specify the base 

model. Once the VSpec tree and base model are identified, then the VSpec tree is realized with 
the base model with the help of VP. Phase ❸ in Fig. 2 includes an example of reference 

architecture while Fig. 12 shows the architecture evolution of smartwatch case study where 

two features Language and Speaker are added as new requirements. Fig. 4 shows an example 
of architecture designing process where feature model, base model, resolution model, 

variation points, and resolved model are illustrated. 

4. Case Study  

To validate our proposed approach, we carried out a case study on the smartwatch domain. 

The smartwatch has become part of the life of millions of users around the world. The smartwatch 
domain was taken as a general example to know the general requirements instead of a specific 

product. Facebook and Twitter are selected as platforms to conduct our case study. The 

English of SNS were used in our case study. The guidelines of Runeson and Easterbrook [20, 

21] are followed to conduct this case study. 

3.1 Research Questions 

The main objective of this study is to help software requirements engineers to hear directly 
from their end-users, and finally, remain ahead of the highly competitive and volatile market. 

Based on these assumptions, the following research questions are formulated to evaluate our 

proposed methodology.  
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RQ1: What type of user opinions exits in terms of bugs reports, new feature demands, and 
quality attributes? 

RQ2: How ML algorithms help to extract user requirements? 

RQ3: What challenges are faced by requirements engineers to elicit user requirements 
using SNS such as Facebook and Twitter?  

3.2 Research Method 

The research method of our study is consisting of four phases: data collection, data 
preprocessing, data analysis phase, and architecture design phase. 

3.2.1 Data collection 

We use Twitter’s search API to collect the tweets for Pebble smartwatch. We also used two 
Facebook pages (Watch-wearables and Smartwatch) to collect the user comments about 

Pebble smartwatch. Facebook also provides open API to collect the user comments from a 

specified Facebook page. The Twitter API was customized to search for a particular term or 
hashtag (#) in Twitter feeds. The hashtag (#) allows users to search for desired terms explicitly 

to extract a list of opinions about a specific topic of interest. Based on the hashtag, the opinions 

of users are mined at a large scale to infer the discussions of public towards a specific topic, e.g. 
learning public opinion for a public figure or recent event [22]. Similarly, Facebook comments 

are also analyzed to know the sentiment of people on a specific topic or to know the user 

opinion for a specific product [6]. At the end, we collected 30633 tweets from Twitter and 

18482 comments from Facebook. As a result, a dataset of 49115 unique opinions were 
gathered. We collected users’ opinions from Facebook and Twitter from 21 December 2018 to 

20 January 2019. Fig. 6 shows the number of collected opinions per day over the process of 

data collection. 

 
Fig. 6.  Number of opinions collected per day 

 

3.2.2 Data Preprocessing 

The collected data both from Twitter and Facebook was noisy. Therefore, we applied some 

NLP techniques to clean the dataset. First of all, we tokenized all the opinions to get the 
desired keywords. After tokenization, we converted all the opinions into lower case, then 

n-gram(unigram, bigram, and trigram) were extracted ( for classification). We also removed 

stopwords and applied stemming on our dataset to obtain a cleaned dataset. 
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3.2.3 Data Analysis 

Based on the preprocessed data, we apply some ML algorithms to see up to what extent ML 
techniques classify the user requirements in terms of new feature demands, bug fixing request, 

or some non-functional requirement. In this section, we first model the topics in our dataset to 

know the overall discussion of users. For this purpose, along with topic modeling, we use the 

Wordcloud to know the most discussed keywords in the users’ discussion. Then we extract the 
sentiment of our collected corpus to know the overall sentiment of users. The negative 

sentiment of users will help software developers look into the matter to address the issues to 

fulfill the user demands. Lastly, we classify the opinions in our dataset by using some popular 
ML algorithms. 

A. Topic Modeling  

Topic modeling is an ML statistical model to discover the abstract topics that exist in a 

collection of documents [39]. It frequently used in text mining to discover hidden semantic 

relation in a text document given that the document is about a specific domain [40]. Topic 

modeling is the first phase of our opinion analysis to discover user requirements. A summary 
of topics from the whole document can be a compact description that includes the main theme 

of collected opinions related to a specific topic. In this section, we used two NLP techniques to 

get the insights of discussed topics in our dataset. We used jsLDA [41] tool to model the 
related topics for smartwatch domain. The jsLDA is a tool that makes the running topic model 

easy with a modern web browser. It also demonstrates the potential of statistical computing in 

JavaScript. With standard stopwords, we developed our own stopword list to increase the 
accuracy of  the model. We trained our dataset for 100 topics with 401 iterations. Fig. 7 shows 

the result of our topic modeling with jsLDA. 
 

 
 Fig. 7.  Topic modeling for smartwatch domain    
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      When a topic combination appeared more frequently than the model expected, then the 

circles are appeared as blue. The circles become large when the frequency increases. For 
instance “software original problem/buttons touch interface” are correlated and marked as a 

blue circle. It means that whenever the user discusses a software problem, they discuss the 

touch button of smartwatch and it is more frequent. While,  when topics occur together less 

than model expected are marked as red. For instance, “water resistant swimming/ app 
weather” has a correlation. It means that, when user talk about the weather (probably hot), 

they talk about the watch to be a water-resistant one. The model was not expected this 

correlation but it has predicted. These correlations help software developers consider user 
scenarios while designing their products. Therefore, topic modeling can significantly 

contribute to elicit user requirements and software development organization can reflect these 

requirements in the next release of their product. 
      Along with correlation analysis of topics, we analyzed the summaries of topics with jsLDA 

and visualized result with the help of excel pivot charts. Fig. 8 shows the result of our topic 

summary analysis. The x-axis shows a list of topics while the y-axis shows a number of 

occurrences of the topic in the dataset. The user demands and their bad experiences can be 
clearly seen in  Fig. 8. For instance “connection problem”, “messaging issue”, “music 

control app stoped” clearly show users intent which can be easily interpreted as requirements. 

 

 
Fig. 8. Example of Topic summary 

 

       Before classification, we also used some other visualizations to our dataset to see the most 

discussed keywords in our dataset, the wordcloud is a good choice to do so. The wordcloud 

displays list of words regarding their frequency of occurrence. We used python wordcloud 
library for its implementation. Fig. 9 shows an example of wordcloud in our case study. The 

figure clearly shows the most discussed topic is a smartwatch, connection, battery, and 

notification etc. Table 1 shows an example of user opinions related to a smartwatch, 
connection, and battery in keywords in our dataset. 

 

 
Fig. 9.  wordcloud example of smartwatch domain 

 

 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019                                     4201 

Table 1. Example of opinions related to a smartwatch, connection and battery keywords 

Opinions related  “smartwatch” Opinions related  “connection” Opinions related  “battery” 
“I'm buying a smartwatch, and 

watches need to look good” 

“I have been using this watch 

for a while and was reasonably 

happy with it until suddenly 

stopped being able to connect to 

my Android phone” 

“outstanding battery life” 

“ great watch loved it” “Another unexpected feature is 
the distance of the Bluetooth 

connection” 

“I am going to let the battery 
drain down to pretty much 

nothing to see just how much 

battery life it has” 
“ ugly and expensive” “ no problem with connecting 

iphone 5” 
“ battery is the real problem” 

B. Classification 

Classification is the study of identifying to which of a set of categories a new observation 
belongs based on a trained set of data that includes observations whose classification is known 

[48]. In this section, we classify users’ opinions into various categories by applying some 

famous ML classification algorithms. This section answers our research question RQ1 and 
RQ2. First of all, we manually analyzed a sample of 600 users’ opinions to know what 

information exists relevant to user requirements, which can be beneficial for software 

development organizations for their software evolution. We used [28] as a basis to categorize 

the user opinions. We enhanced the list of categories by adding new categories by examining 
600 opinions (tweets and comments) from our dataset. Additionally, we assume that the 

opinions that expressed on the account of smartwatch domain can be categorized into relevant 

or irrelevant opinions. 
     A group of five postgraduate students of computer science with a research interest of 

requirements engineering are selected for our manual classifications. We were providing the 

sampled opinions and leading the process of classification. Majority voting was carried out to 
resolve the conflicts. Conflicts were reported while analyzing opinions which convey dual 

meaning. For instance, “the notifications from my watch disappears, can anyone tell me why it 

happens? anyway, need a better solution” can be classified as a bug report (notification 

disappears) or new feature demand (anyway need better solution). In our whole manual 
classification process, we dealt with 210 conflicts. Table 2 shows the findings of our manual 

classification. The manual classification of opinions is briefly described as below: 

       Bug Reports: The opinions which are classified as bug reports potentially report user bad 
experience with either smartwatch design (hardware and interface), provided applications, or 

operating system. For instance “when I use animations or scroll layers my application 

crashes” reports a bug regarding animations and scrolling. Similarly “ my touch does not work 
well in winters, I am pissed off with it” reports a bug regarding the touch screen of a 

smartwatch in some specified scenario while  “I am satisfied with the purchase but the one 

complaint I have is that the heart rate monitor gets a crazy high number during long runs. It 

seems to work well up to about 145 bpm and then if my real rate goes above that the heart rate 
falsely goes up to about 170 bpm” reports a bug in heartbeat application provided my Pebble 

smartwatch. 

      New feature demands: The opinions in this category usually request for a new feature in 
the system. The users demand new feature and share innovative ideas or express their 

dissatisfaction for a specific feature. For instance “ I have a niece in college who is blind and I 

wish pebble would provide audio notification for calls and messages” demands new feature 
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for blind people in pebble smartwatch. This kind of opinions can help to evolve the software 

systems and software development organizations can easily plan their next release. This also 
let software development organizations which feature they have to add, correct, enhance, or 

omit from the system. 

 
Table 2. Number of bug reports, new feature demands, quality attribute, and irrelevant opinions 

collected from SNS 

         Domain Bug Reports New Feature 

Demands 

Quality 

Attributes 

Irrelevant 

Smartwatch Design 45 67 23 251 

Smartwatch App 89 123 46 176 

Smartwatch OS 113 34 18 161 

 

      Quality attributes: In a software system, functional requirements describe the intended 
actions of the system, while non-functional requirements define the overall behavior and 

constraints of the system. Early identification of non-functional requirements can reduce 

software development cost and time while boosting user satisfaction [29, 30]. We classified all 

those opinions into quality attributes which tell us about software constraints, hardware 
constraints or talk about quality characteristics and sub-characteristics defined by ISO 9126 

[31]. For instance “did not sync with my phone. I had tried every possibility and followed 

instructions on pebble's forums” talk about portability issue of pebble smartwatch. Similarly, 
“my watch died on me after less than two weeks (horizontal lines of death) which after 

spending a few weeks on this sub I've come to realize is a common way for the watch to die” 

talks about display and reliability of pebble smartwatch. Another user says somewhere in our 
dataset “ according to bbc report, EU recalled children’s smartwatch over data security 

concerns”. This opinion clearly talks about the data security of children's smartwatch. All 

these kinds of opinions were classified as quality attributes in smartwatch domain. 

     Irrelevant: A significant number of opinions in our sample dataset were classified as 
irrelevant because they did not convey any information about the requirements of the 

smartwatch. These opinions might include advertisements, general praise, news, or general 

information. For instance “ glad to see the new version of pebble OS” and  “thank you pebble 
for providing quick charging”  although praise the product which can be used in sentiment 

analysis but at this stage, we classified these opinions as irrelevant opinions. 

     Fig. 10 shows a summary of our manual analysis. The result of our manual classification 

shows that out of 600 opinions analyzed, 53% opinions were relevant (bug reports, new 
feature demands, and quality attributes) while 47% opinions were classified as irrelevant 

opinions. These investigations answer our RQ1. The user opinions contain meaningful 

information for software developers including bug reports, new feature demands, and quality 
attributes. A significant amount of noisy text also includes in user opinions which was hard to 

categorize and named as an irrelevant category. 

 

 
Fig. 10.  Result of our manual classification for opinions 
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     Classifiers: To address our RQ2, first we analyzed some ML classifiers such as logistic 

regression, Support Vector Machine (SVM), Multinomial Naive Bayes (NB), Random Forest 
(RF), and AdaBoost to select the classifiers that are most effective in our scenario. Secondly, 

what classification features produce the most suitable results in our opinions classification? 

Therefore, the primary screening was carried out to select the most effective classifiers in the 

context of Facebook comments and Twitter data [33, 45]. After a primary screening, we 
selected Multinomial NB, RF, and SVM classifier due to their promising results in text 

classification. Before moving forward, a brief introduction of selected ML classifiers is 

necessary for readers’ understanding. 

 Support Vector Machine(SVM): It is a supervised ML algorithm introduced by [25] 

which addresses two-group classification problems. Taking advantage of handling large 

feature, SVM works well for text classification. SVM has proved its importance by 

getting promising results on short text analysis in previous literature [26, 27]. It finds a 
line in multidimensional space that classifies classes. 

 Multinomial NB: It is a probabilistic classifier of supervised ML with strong 

independent assumptions between the features [32]. It implements the NB algorithm for 

distributed data. In multinomial NB, data is typically represented by a word vector counts. 

It calculates likelihood to be a count of a token or a word. The decision of using 
multinomial NB over NB was based on [33] and its promising results in [34, 35]. 

 Random Forest (RF): It is a supervised ML classifier which creates a first and makes it 

random. It can be used for both regression and classification problems. It has already 

proved its need by producing promising results in text classification [36, 37]. In order to 
understand RF, we need to understand the decision tree, which is the foundation of an RF. 

 

      Classification Features: Selection of features in classification enables ML algorithms to 

train faster, reduce model complexity, and improves the accuracy of the model. It also reduces 
model overfitting. Therefore, to achieve more accurate results, we are using a combination of 

text features such as the content of the text itself (DBOW), text preprocessing, and sentiment 

analysis. 

 Opinion Content: The main goal of our automatic classification is the words of 

opinions. The Distributed Bag-of-Words (DBOW) is simplifying text representation 

in NLP. In this model, the text is presented as a bag (multiset) of its words, 

irrespective of grammar and even word order but keeping multiplicity. 

 Text preprocessing: In this feature, text reduction techniques of NLP are applied 

such as stop-word (SW) removal, stemming (ST). Stop-word removal is an NLP 

technique by which those words are removed from the text which is considered too 

generic for instance, will, in, the, shall, etc. The stemming is an NLP data 

preprocessing technique to obtain the root form of a word. This technique reduces the 
number of features in the text because only one form of a word appears when applied. 

 Sentiment Extraction (SE): Sentiment extraction has proved its importance in the 

field of data science where it is used to correlate with users’ opinions regarding a 

specific topic [22, 23]. In our study, we consider that a negative sentiment might 
reflect a user’s a bad experience with the system or bad experience with a particular 

feature of a system. It might also show the feature request, a bug report in case of a 

user’s a bad experience. Similarly, a positive sentiment might tell a good experience 
of a user or just users’ satisfaction [24]. 
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C. Evaluation 

For the implementation of SVM, Multinomial NB, and RF, we use the scikit-learn library of 
python [38]. We used our truthset of 600 opinions which were manually analyzed for opinion 

classification. We trained and tested our classifiers by applying 10-fold cross-validation. This 

creates 10 different partitions of the dataset that takes 90% of the instances as a training set and 

10% as an evaluation set for each partition. Additionally, we compared all three classifiers 
with each other to know their performance. We used precision, recall, and F-measure to 

evaluate the performance of different classifiers with different classification features. Table 3 

shows a summary of opinion classification accuracy in terms of precision, recall, and 
F-measure. 

        On average, all classifiers were able to get competitive results. The performance is based 

on the dimensionality of our dataset. The Twitter messages were short in size but the 
comments from Facebook were a little long that made the feature space (number of words) 

very large. The users use informal language in their tweets and comment that also drastically 

increased the number of features that classifier has to process. Therefore, the selected features 

made a difference in the result. 
      The sentiment did not affect the performance of classifier as was expected, because unlike 

political tweets or Facebook comments which tend to be more polarized as compared to the 

opinions collected for smartwatch domain. Fig. 11 shows the sentiment score for different 
categories of opinions. The figure shows new feature demand tend to be slightly positive (+1), 

while bug reports and quality attributes also known as non-functional requirements (NFRs) 

tend to be slightly negative (-1). As we see, the difference was not significant that would affect 

the classification accuracy. The opinions which were classified as others got a neutral state (+1, 
-1). 

     The sentiment extraction phase did not contribute a significant step to get user requirements 

but we were able to see the overall mode of users for a specific product. We see that the 
negative sentiment was slightly useful to get user requirements. For instance, “ ahh, the poor 

battery of this watch sucks ! we need a long battery” helped to get to know the problem about 

battery life. We have seen that the only sentiment cannot determine what users really want, but 

when it is used with other NLP techniques such as classification and topic modeling, can give more 

insights about the user opinions. 

Table 3. Classification Result 

      Bug Reports 
      New Feature 

         Demands 
Quality Attributes 

Combinations P R F P R F P R F 

RF: 0.78 0.57 0.66 0.77 0.58 0.66 0.61 0.62 0.61 

RF+ ST 0.72 0.81 0.76 0.73 0.79 0.76 0.58 0.59 0.58 

RF+ SW+ST 0.69 0.74 0.71 0.67 0.74 0.70 0.57 0.59 0.58 

RF+SE 0.73 0.75 0.73 0.69 0.73 0.71 0.65 0.61 0.63 

NB: 0.71 0.77 0.74 0.76 0.57 0.65 0.70 0.68 0.69 

NB+ ST 0.70 0.79 0.74 0.74 0.58 0.65 0.69 0.71 0.70 

NB+ SW+ST 0.67 0.74 0.70 0.72 0.55 0.62 0.63 0.69 0.66 

NB+SE 0.74 0.77 0.75 0.77 0.55 0.64 0.68 0.70 0.69 

SVM: 0.77 0.74 0.75 0.71 0.59 0.64 0.71 0.69 0.70 

SVM+ ST 0.76 0.78 0.77 0.72 0.60 0.65 0.73 0.69 0.71 

SVM+ SW+ST 0.75 0.67 0.71 0.69 0.58 0.63 0.71 0.62 0.66 

SVM+SE 0.77 0.75 0.76 0.73 0.61 0.66 0.70 0.58 0.63 

           

 P: Precision, R: Recall, and F: F-measure 
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Fig. 11.  Sentiment score for bug reports, new feature demands, and quality attributes 

 

       As a result, this investigation answered our RQ2. For RQ2, we concluded that opinions 

include very useful information that can lead to evolving software products. Because the 

opinions include bugs reports, new feature demands, and quality attributes which shows a 
piece of significant rich information for software developers. Our investigation confirms that 

our used classifiers are most suitable and robust for short text mining [46]. 

3.2.4 Reference Architecting  

In this section, we show the evolution of smartwatch product as a result of our requirements 

elicitation from SNS. The early and quickly elicitation of requirements for the evolution of 

software is the main goal of this study. Therefore, our focus was mainly on requirements- 
driven evolution of software product lines. In this section, we provide an abstract view to 

designing reference architecture using our proposed architecture design strategy. 

        The requirements are identified as a result of our data analysis phase of the case study. At 
the end of our data analysis phase, we elicited 1430 user requirements. The requirements are 

then modeled through VSpec tree and architecture is designed. We used our architecture 
designing strategy mentioned in Fig. 5 to design reference architecture. Fig. 12 shows an 

example of our implementation where VSpec tree (FM 1) of the smartwatch is evolved (FM 2) 

by identifying new requirements. As mentioned in section 2.3, our architecture strategy has 
four basic steps. The first step was to elicit user requirements from SNS which easily saves 

time at requirements elicitation phase and as a result, products are evolved quickly [42]. For 

requirements elicitation step, we have applied ML algorithms and identified user requirements. 

After identifying user requirements, the VSpec tree is drawn manually. Based on the 
requirements elicited in the first step, the constraints are identified. An example of a constraint 

is explained in Fig. 4. In step 3, we constructed the base model. The base model does not 

contain any variability information. Lastly, variation points are defined to realize them with 
VSpec tree and elements in the base model. This step can be manual. As a result, the reference 

architecture is built. To generate different applications on the basis of the evolved reference 

architecture, a number of techniques [43, 44] can be applied. Our aim is to evolve a reference 
architecture which can impact the whole family of the products of the product lines. 
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Fig. 12.  Architecture evolution based on our approach 

 

3.3 Overall Discussion 

This section discusses the result of our evaluation and discusses the challenges faced during 

the elicitation of user requirements by using SNS. Developers, requirements engineers and 

SPL engineers can use the outcomes of classification, topic modeling, and sentiment analysis. 
The topic modeling gives collections of words that convey user demands together. When we 

used jsLDA for topic modeling, we were not expecting such promising results initially, but 

when we trained our dataset we saw a piece of significant and useful information that can be 

used by software developers or software development organization. For instance, “software 
original problem/buttons touch interface” was extracted as correlated terms. This means that 

whenever the users discuss about a software problem, they discuss on the touch button of 

smartwatch and it is more frequent. This type of information is very significant for 
requirements engineers. Our data was consisting of tweets and comments, the tweets are very 

short text while comments were long. The whole dataset was a mixture of both tweets and 

comments. The jsLDA would perform better if our data would be bigger. Meaning that the 
extra topic layer does not add anything to the classification when we work on a smaller 

document. If we have really short documents, like tweets, it is very hard to break the document 

into topics. As a result, it affects the prediction results. We learned that bigger size of the 

dataset, more predictions in topic modeling. 
      The classification helped us to identify opinions that contain bug reports, new feature 

demands, and quality attributes. These opinions are useful for software development 

organizations, as these opinions contain very useful information to elicit user requirements or 
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to identify a big to be fixed or to identify a non-functional requirement. For instance, “ if your 

watch does allow you to enjoy swimming with it, then it is wastage of money! Need water 
resistant watch” report a designing issue smartwatch. The user demands a watch with water 

resistant feature. Similarly, “when i received text messages, my watch stucks and requires a 

restart to work !” reports a bug in a smartwatch. Classifying bug reports and new feature 

demands were slightly easy than classifying quality attributes. For instance, “ when I click on 
the main button it responds late, ridiculous, it should respond within a fraction of seconds” 

implicitly express the usability requirements (quality attribute). In such type of opinions, it 

was difficult for our classifiers to predict the quality attributes. This is because the classifier 
was limited to predict quality attributes for which it has been trained. We only trained our 

dataset to classify those opinions which explicitly talk about the quality attributes. For instance, 

“according to bbc report, EU recalled children’s smartwatch over data security concerns” 
explicitly talk about data security and it can be easily classified as quality attribute class. As 

mentioned in [49], identifying NFRs through automated classification is a difficult task. We 

also learned that a semi-automated methodology is required to fully identify all types of NFRs 

from raw text like tweets and comments. Summarizing the discussion, we faced a number of 
challenges including the classification of quality attributes. It was difficult to classify all 

possible quality attributes from our dataset. This is because indicator terms were trained to 

classify the quality attributes. Although, our approach identifies the quality attributes it still 
requires domain analysts to evaluate the correctness of identified quality attributes or NRFs. 

Finally, this section answered our RQ3 in detail by mentioning the problems faced during our 

whole process of identifying requirements from SNS. 

 5. Threats to Validity 

We first analyzed opinions manually to make their categories. This manual analysis was based 
on the human judgment which is an error-prone process because human bias can affect in 

deciding if an opinion falls within a particular category or related to a particular domain. To 

cope with these challenges, we conducted this process by involving well-trained five 

postgraduate students. Additionally, we made a clear definition of defined categories and 
circulated this document to make sure the understandability of definition and concept. The 

conflicts were resolved by a majority voting scheme. 

      This study was conducted to elicit requirements for smartwatch design and application 
domain. We extract user’s opinions and discussions without considering some special events 

that could affect the user opinions, such as new product release or a new product recall.  

Furthermore, for our automated classification, we relied on our manual classification. 
However, conducting manual classification on the whole dataset is unrealistic. Therefore, we 

used a sample of opinions for manual classification. The address generalizability threats, we 

selected the sample opinions using random sampling.  

      The proposed approach depends on the quality of unstructured data, such as tweets and 
comments. Particularly, if the opinions contain many slangs and meaningless words, then it 

would be difficult to annotate comments or tweets to a particular category. This is an 

inevitable part of this study, but it can be mitigated by applying comprehensive NLP 
techniques. 
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6. Conclusion 

This paper presents a process that supports the rapid evolution of SPL products by eliciting 

requirements from popular social network sites. To elicit requirements from SNS, we applied 
classification, topic modeling, and sentiment analysis. All outcomes from these steps were 

meaningful and useful for requirements engineering and software development organizations. 

For classification, we selected SVM, RF, and multinomial NB classifiers. We selected three 
features as classification features for classifications. These include bag-of-word, sentiment 

extraction, and stopword removal. We observed that all classifiers produce almost similar 

results. The result for quality attribute class was a little disappointing due to some reasons,  

mentioned in the discussion section. 
     Additionally, we have presented an adaptive architecture designing strategy to reflect the 

new requirements in the system quickly. It is very useful to quickly reflect user and market 

needs, and to keep up-to-date reference architecture to quickly develop an SPL-based product 
family. 

     In the future, we want to investigate our architecture designing strategy in detail for 

dynamically reflecting emerging requirements in SPL. Although this future research on 
dynamic evolution of SPL architecture may produce diverse architecture models with 

variabilities, we believe that it will be suitable for SPL engineering of developing a series of 

product families.  
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