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Abstract 
 

More and more problems for public security have occurred due to the limited solutions for 
drone detection especially for micro-drone in long range conditions. This paper aims at 
dealing with drones detection using a radar system. The radio frequency (RF) signals emitted 
by a controller can be acquired using the radar, which are usually too weak to extract. To 
detect the drone successfully, the static clutters and linear trend terms are suppressed based on 
the background estimation algorithm and linear trend suppression. The principal component 
analysis technique is used to classify the noises and effective RF signals. The automatic gain 
control technique is used to enhance the signal to noise ratios (SNR) of RF signals. Meanwhile, 
the empirical mode decomposition (EMD) based wavelet transform (WT) is developed to 
decrease the influences of the Gaussian white noises. Then, both the azimuth information 
between the drone and radar and the bandwidth of the RF signals are acquired based on the 
statistical analysis algorithm developed in this paper. Meanwhile, the proposed accumulation 
algorithm can also provide the bandwidth estimation, which can be used to make a decision 
accurately whether there are drones or not in the detection environments based on the 
probability theory. The detection performance is validated with several experiments 
conducted outdoors with strong interferences. 
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1. Introduction 

Based on the lightweight aircraft, the drones have become one of the widely accepted terms 
integrated with different devices, which are operated without a human pilot onboard in 
conjunction with ground control systems [1]. As a useful tool, the drones have are used in 
military applications initially including search/destroy missions [2], surveillance, aerial 
photography, and reconnaissance [3], which can provide higher spatial resolution such as up to 
the sub-centimeter level in small areas due to their low operational altitude [4]. The relatively 
low cost of different drone platforms is the most important factor, which leads to their wide 
popularity and recent success. Over the previous decade, drones have been increasing, which 
are used for data acquisition by more and more actors and stakeholders such as scientific 
institutions, governmental authorities, individuals and commercial operators [5]. Especially in 
civil applications, drones are widely applied in land administration [6], documentation of 
cultural heritage and archaeological sites [7], support for disaster management [8], 
high-resolution surface reconstruction in the geosciences [9], forest and agriculture change 
detection [10], surveying and mapping [11], and wildlife observation [12]. 

Drones can provide more and more convenient services, but numerous problems for the 
public security come correspondingly. As known, one drone was used to interrupt the US 
Open tennis match and another crashed at the White House. The drones in illegal flight disturb 
the air flight conditions and pose a great threat to the flight safety of passenger aircraft. Some 
small drones are usually used for invading human privacies. More and more accidents have 
been trigged due to the popularity of drones. Until now, shooting the drones failing to comply 
with regulatory requirements is considered as the most effective solution. The authors in 
[13-14] employ the genetic algorithm (GA) to jam the drones. In [15], the GPS signals are 
jamming, which can make the drone disable. However, all these methods can only work better 
only when these drones are detected, which are impossible to achieve without effective 
detection solution. Thus, more works are required to deal with the public security. Many 
detection solutions have been developed in past few years including the acoustic recognition, 
active radar, visual recognition, infrared spectrum analysis, and RF detection [16-20]. By 
modulating the RF signals, the active radar was used for drone detection at short ranges [16]. 
Without considering the flight pattern, the drones are recognized using a calibrated radar cross 
section technique in [17] at 2 000 m. The authors employed the complex-log Fourier transform 
method for drone detection, which can acquire the spectrogram features [18]. Based on the 
log-polar transformations and space-variant resolution, the drones are identified [19], which 
can only work at short range. The drones are located using the acoustic array in [20] at an 
effective range of 300 m. Meanwhile, the detection algorithms based on neural networks (NN) 
[21], fuzzy systems [22], least squares (LS) [23], frequency based approaches [24], Kalman 
filters [25], and Gauss-Newton [26] etc. have also been developed. However, limited works 
can be acquired for drone detection. Thus, some alternative methods have to be developed to 
deal with the problems of drones in illegal flight. This paper mainly deals with the weak signal 
extraction solution for the drone detection. The major factors including the static clutter and 
linear trend term are removed. The principal component analysis is used to acquire the 
effective radio frequency (RF) signals. And the signal to noise ratios (SNR) of RF signals is 
improved based on the automatic gain control algorithm. The empirical mode decomposition 
(EMD) based wavelet transform (WT) is employed to reconstruct the effective RF signals. 
Based on the statistic theory, the azimuth information between the radar and drone is acquired. 
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The bandwidth of RF signals is obtained using the developed accumulation algorithm. Using 
the probability theory, accurate judgements can be made whether there are drones or not in the 
detection environments. 

The following sections are introduced as: the system model is introduced in Sec. 2. Sec. 3 
discusses the proposed detection algorithm using passive radar. The detection results are 
discussed in Sec. 4. Sec. 5 concludes the whole paper. 

2. System Model 
As shown in Fig. 1, a drone, a receiver, and a controller are considered in the developed 
passive radar system. The controller can emit RF signals, which can meet the requirements of 
communicating with the drone. The receiver can acquire RF signals emitted by the controller. 
As known, RF signals are usually within 2.4-2.4835 GHz, which can control the most drones 
for flight and image transmission based on the frequency hop spread spectrum technique [27]. 
Meanwhile, the RF signals have to meet the IEEE 802.11 standard [28].  

 
Fig. 1. The system model.  

 
Fig. 2. The spectrums of RF signals. 

 
The used drone and the corresponding controller are developed by the DJ-Innovations. 

Using the receiver, the data can be acquired for each given distance such as 2500 m. Assuming 
that the power of the received RF signals is given by y(f ) in dBm, where f denotes the 
frequency samples within 2.4-2.5 GHz. All 5120 samples can be acquired with the interval of 
fw = 19.53 kHz as shown in Fig. 2. The results indicate that the RF signal emitted by the 
controller has a larger bandwidth, which is approximately 9.8 MHz. In real detection 
environment, due to the larger range between the receiver and the drone, the RF signals are 
usually too weak to find especially in complex multipath environments. This paper aims at the 
drone detection outdoors. 
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3. Proposed Algorithm 
Fig. 3 shows the proposed algorithm based on the acquired RF signals AMN at 500 m using the 
radar, which is an azimuth-frequency matrix as show in Fig. 4. 
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Fig. 3. The proposed detection algorithm. 

         
Fig. 4. The acquired RF signals at 500 m.            Fig. 5. The results removing static clutter. 

3.1. Static Clutter Removal 
The static clutter in AMN [29] can be estimated as  

[ ]
1 1

1 M N

m n
B A m,n

M N = =

=
× ∑∑                                             (1) 

 
Subtracting (1) for each value in A, the results C are acquired as shown in Fig. 5. 
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3.2. Linear Trend Suppression 
This subsection employs linear trend suppression to eliminate the potential terms with linear 
trend. As shown in Fig. 6, using the linear trend suppression, the results are [30] 
 

( )-1Τ Τ Τ TD = C - X X X X C                                           (2) 
 
where  
 

[ ]1 2

0 1
2 1

1 1N

 
 
 = =
 
 

− 

X x x
 

                                                           (3) 

         
Fig. 6. The results using linear trend suppression.   Fig. 7. The results using  principal component 

                                                                                        analysis. 

3.3. Principal Component Analysis 
The principal component analysis is used to acquire RF signals. Usually, (2) can be divided 
into several complementary subspaces as [31] 
 

  D=USVT                                                                         (4) 
 
where S denotes a diagonal matrix, UMM denotes an unitary matrix, and VNN is an unitary 
matrix. The singular values i in S meet 1 ≥ 2 ≥3 ≥ ... ≥r ≥ 0. The columns in U, i.e. the 
eigenvectors of WWT, are composed of the left singular vectors. The columns in V, i.e. the 
eigenvectors of WTW, are composed of the right singular vectors. Equation (4) can be 
redefined as  
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                        (5) 

where Mk is the kth intrinsic image with the same dimensions as E.  
As usual, (5) can be divided into two parts as 
 

  D=Mdrone+ MNoise                                                                    (6) 
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where Mdrone is the RF signals, MNoise is noises, which can be removed. Thus, the effective RF 
signals can be acquired as  
 

T

1

n

i ii i
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u vσ
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Fig. 7 shows the results based on the principal component analysis algorithm. 

3.4. Automatic Gain Control 
As an adaptive algorithm, the automatic gain control algorithm is extensively used in many 
applications [32]. The gain values of the inputs in a given range usually can be adjusted to 
appropriate levels using the fed levels of the averaged outputs.  

 
. Fig. 8. The results using automatic gain control. 

 
An effective application of automatic gain control method is to enhance the amplitudes of 

the weak signals in radar systems [33]. Via adjusting the gain values based on the calculated 
power of the signals in a window w, the key is to compare the gain values and gmax as 
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where 0,2, , 1n N= −

, 0,1, ,i M w= −
.  

The normalized gain values gnorm[i, n] are 
 

[ ]norm min, [ , ] [ , ]g i n g i n g i n=                                                  (9) 
 
where gmin[i, n] is the acquired minimal gain, which can be expressed as 
 

[ ], [ , ]g i n w e i n=                                                       (10) 
 
where e[i, n] is the calculated power of the signals in a window w, which can be expressed as 
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Using the automatic gain control method, gmax can be determined based on the calculated 
gain values. In this paper, gnorm[i, n] is set to be 0.6 based on the empirical evidences [34].  

We can acquire the following results given by 
 

[ ] [ ] [ ]mask, , ,F i n E i n g i n= ×                                                   (12) 
 

The results using the automatic gain control algorithm are shown in Fig. 8. We can see 
RF signals are improved significantly, which can make it easy to detect.  

3.5. Noise Suppression 
As an adaptive algorithm, EMD is widely used to deal with the non-static signals [35], which 
can make it divided into various intrinsic mode functions (IMFs) and a residual trend.  

     
   (a)                                                                      (b) 
Fig. 9. The acquired IMFs using EMD algorithm.  

 
Fig. 9 shows the first 12 IMFs of the RF signals and a residual trend. The residual trend is 

considered as noises. For the IMFs, the boundary between RF signals and noises is 
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where  
 

vv vP E T=                                                                       (14) 
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2v v vT N O=                                                              (16) 

 
and Nv is the number of values in IMFv, Cv is the maximum value in IMFv, and Ov is the number 
of local extrema in IMFv. For AWGN, (14) is approximately a constant. As a result, IMFv can 
be regarded as noises when (13) < 1. It was determined by simulation that IMFs 1 to 6 can be 
considered as noises. Using EMD, the results are shown in Fig. 10, which indicate the RF 
signals are improved obviously.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 8, August 2019                                     3869 

         
Fig. 10. The results using EMD      Fig. 11. Eight levels wavelet packet decomposition tree.  

 

3.6. Signal Reconstruction  
This subsection employs WT to reduce influences of noises and reconstruct RF signals [36-37]. 
In wavelet analysis, RF signals for each given azimuth Gm(n), are used to compare with the 
wavelet function. The acquired coefficients can be used for showing how RF signals and the 
wavelet functions match. Due to RF signals are stored in digital form, the coefficients obtained 
from the discrete WT are  
 

( )1 *m
n

k bG n
aa

ψ − Τ =  
 

∑                                              (17) 

 
where k denotes the samples of RF signals, * denotes the complex conjugate, a is the scaling 
parameters, b is the translation parameters of the mother wavelet Ψ(n), and ( )( )k b aψ − is the 
son wavelets.  

 
(a)                                                                    (b) 

Fig. 12. The decomposed signals using WT technique.  
 

In this paper, the Haar wavelet is considered as mother wavelet due to its simple 
numerical implementation and simplified computation. By employing a wavelet packet 
decomposition tree with eight levels as shown in Fig. 11, the decomposed RF signals are 
shown in Fig. 12. Based on the spectrums of Welch power of RF signals, they can be 
reconstructed from the decomposed signals d4 as shown in Fig. 12. Fig. 13 shows the 
reconstructed signals H. 
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Fig. 13. The results using WT.                    Fig. 14. The results using averaging filter. 

3.7. Averaging Filter 
This subsection proposes an improved filter to improve SNR. The following results can be 
obtained when the filter is performed on H in azimuth direction as 
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where 1, , 12k M=    . 12M   denotes the maximum integer value less than M/12.  

Fig. 14 shows the results based on the filter, which show RF signals are improved 
effectively and the better performance on noises suppression.  

3.8. Frequency Estimation 
This subsection proposes three methods for frequency estimations of RF signals. 

Firstly, the Hilbert transform is used to improve SNR. For each azimuth signal Im(n), the 
Hilbert transform is applied [37], which is given by 
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                                             (19) 

 
where ω denotes the frequency samples. 

To acquire the frequency estimations, the characteristics including the skewness [38], 
kurtosis, standard deviation, and maximum slope are analyzed. For each azimuthal signal 
Jm(n), the standard deviation is given by  
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where μm denotes the mean value of Jm(n). 

And the maximum slope is expressed as  
( ) ( ) ( ) ( ) ( )( ){ }

1 1
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L m J i J i J i J i n
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Using RF signals at 500 m, the analyzed results are shown in Fig. 15. Thus, the frequency 
value corresponding to the maximum (20) is considered as the estimation τ1, which is 
 

( )1τ ω γ=                                                                   (22) 
 
where  

( )
1

arg max
i M

K mγ
≤ ≤

  =                                                        (23) 

 
And the frequency value corresponding to maximum (21) is considered as the estimation 

τ2, which is  
 

( )2τ ω η=                                                                  (24) 
 
where  
 

( )
1
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i M

L mη
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  =                                                        (25) 

 
ω denotes the frequency samples. 

Further, the accumulation method in azimuth direction is proposed to estimate the 
frequency, which is given by 
 

( )
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m

m n
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Q J i n N
=

= =∑                                                (26) 

       
Fig. 15. The analyzed results of the RF signals.     Fig. 16. The results using the accumulation 

                                                                    method.  
 

As shown in Fig. 16, the maximum (22) is referred as the frequency estimation τ3, which 
is given by 
 

( )3τ ω υ=                                                                (27) 
 
where  

[ ]
1

arg max m
i M

Qυ
≤ ≤

=                                                         (28) 
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3.9. Target Determination 
To determine whether there are drones in the detection environment or not, the errors 
calculated from the three frequency estimates are employed as 
 

1, 2,3
1,2,3ij i j

i
j
i j

α τ τ
=

 =
 ≠

= -                                                 (29) 

 
Due to the bandwidth of RF signals is about 10 MHz, the calculated errors can be used as 

a threshold to determine whether there are drones in the detection environments. Based on the 
three frequency estimates, three errors can be acquired. There are drones when λ ≥ 2, while 
there are not drones when λ < 2. λ denotes the number of the error which is larger than 10 MHz. 

3.10. Azimuth Estimation 
To acquire the azimuth estimation, the standard deviation of each frequency signal is analyzed. 
For each frequency signal Jm(n), the standard deviation is  
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1
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n
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P n n
m
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−

∑
                                   (30) 

 
where μn denotes the mean value of Jm(n). 

 
Fig. 17. The analyzed results of RF signals.  

 
Using RF signals obtained at 500 m, the analyzed results are shown in Fig. 17, which 

indicate the area with the normalized values larger than 0.4 are considered as the azimuth 
range.  

4. Results and Discussion 
Experimental results are compared with the minimum mean distance (MMD) classifier. Using 
the passive radar system, several experiments are conducted to validate the developed 
algorithm. (1) In the conducted first experiment, the used drone in the air is 100 m in height. 
The distance from the radar to drone is 500 m, 1500 m, 2400 m, 2500 m, and 2800 m at 
horizontal direction. The conducted experiments are used to validate the better detection 
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capability in long ranges. (2) The second experiment is carried out with the drone at a distance 
of 2400 m away from the radar. There are several interference sources in the detection 
environments. The conducted experiment is used for testing the performance of noise 
suppression using the developed algorithm. (3) In the third experiment, two drones are used as 
targets at different distances. The capability of multiple drone detection is validated. 

4.1. Detection Performance at Different Distances 
This subsection validates the performances of the developed detection algorithm using RF 
signals obtained at different distances including 500 m, 1500 m, and 2400 m, which are shown 
in Figure 18. We can see RF signals can only be extracted obviously in short range. However, 
RF signals are too weak to identify in long range such as 2400 m especially with strong 
interferences.  

  
(a)                                           (b)                                             (c) 

Fig. 18. The acquired RF signals at (a) 500 m; (b) 1500 m; and (c) 2400 m. 

  
(a)                                           (b)                                             (c) 

Fig. 19. The results after removing noises at (a) 500 m; (b) 1500 m; and (c) 2400 m. 
 

Based on the developed detection algorithm, the results after removing clutters are shown 
in Fig. 19, which indicate RF signals are improved significantly compared with the results in 
Fig. 18. 

4.2. Detection Performance Under Strong Interference 
The detection capability of the developed algorithm under strong interference environments is 
validated based on RF signals acquired at different distances including 2500 m and 2800 m. In 
the detection environment, there are several interference sources as shown in Fig. 20. There 
are several interference sources i.e. the signals in the elliptical region with larger amplitudes 
than RF signals, which make drone more challenging to identify. The results after removing 
noises based on the developed algorithm are shown in Fig. 21. Based on the acquired results, 
the major interferences are suppressed effectively and RF signals are improved.  
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(a)                                                                (b) 

Fig. 20. The received RF signals at (a) 2500 m; and (b) 2800 m. 

  
(a)                                                                (b) 

Fig. 21. The results after removing noises at (a) 2500 m; and (b) 2800 m 

4.3. Frequency Estimation 
The frequency estimates of RF signals at different distances based on the characteristics 
analysis algorithm are shown in Fig. 22.  

 
(a)                                         (b)                                           (c) 

 
                                             (d)                                                  (e) 
Fig. 22. Frequency estimates using the characteristics analysis algorithm at (a) 500 m; (b) 1500 m; (c) 

2400 m; (d) 2500 m; and (e) 2800 m 
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(a)                                           (b)                                          (c) 

 
(d)                                           (e) 

Fig. 23. Frequency estimates using the accumulation method at (a) 500 m; (b) 1500 m; (c) 2400 m; (d) 
2500 m; and (e) 2800 m 

 
Using the results, the developed algorithm can provide accurate frequency estimates 

compared with the analyzed skewness and kurtosis. The frequency estimates of RF signals are 
within 2.42-2.43 GHz when the distances are 500 m, 1500 m, 2500 m, and 2800 m. Further, 
when the distance is 2400 m, the frequency estimate is in the range of 2.46-2.47 GHz. All the 
estimated bandwidths of RF signals are about 10 MHz. 

4.4. Azimuth Estimation 

  
(a)                                            (b)                                         (c) 

 
(d)                                          (e) 

Fig. 24. Azimuth estimates using the developed method at (a) 500 m; (b) 1500 m; (c) 2400 m; (d) 2500 
m; and (e) 2800 m 
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The azimuth estimates at different distances using the developed algorithm are shown in Fig. 
24. From the results, the azimuth estimates are within 90°-120° when the distances are 500 m, 
1500 m, 2500 m, and 2800 m. When the range is 2400 m, the azimuth estimate is within 
50°-80°. All results fit well with the acquired RF signals as shown in Figs. 18 and 20. 
 

4.5. Multiple Targets Detection 

 
(a)                                          (b)                                              (c) 

 
                                                 (d)                                            (e) 
Fig. 25. The results from two targets (a) received RF signals; (b) results removing noises; (c) frequency 

estimates using the characteristics analysis method; (d) frequency estimates using the accumulation 
method; and (e) azimuth estimate using the developed algorithm. 

The detection capability of multiple targets is validated using the radar system. Two 
drones are used as targets in the detection environments one is at a distance of 2400 m, and 
another is at a distance of 2500 m. The received RF signals are shown in Fig. 25(a), Fig. 25(b) 
shows the results after removing noises. Based on the results, two target areas are obvious to 
acquire, which provide the basis for the drone detection. The frequency estimates of the two 
drones are shown in Fig. 25(c) using the developed characteristics analysis algorithm. Fig. 
25(d) provides the two frequency estimates acquired from the proposed accumulation method. 
Finally, the two azimuth estimates at different distances based on the developed algorithm are 
shown in Fig. 25(e). Based on the results, the azimuth estimate of one drone is within 90°-120°, 
while another is within 50°-80°. 

5. Conclusion 
This paper aims at the detection of aerial targets based on the passive radar. Using the 

passive radar, an improved algorithm is developed to identify drones. The noises affecting 
drone detection are suppressed effectively, and RF signals are improved based on the principal 
component analysis and automatic gain control algorithms. The EMD-based WT is used to 
reconstruct RF signals. The drones can be detected precisely. The azimuth information can be 
acquired based on the statistical theory. The monitoring system is validated and tested with 
different experiments conducted in stronger interference condition. 
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