DOI QR코드

DOI QR Code

Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components

  • Pak, Jhang Ho (Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center) ;
  • Lee, Ji-Yun (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Jeon, Bo Young (Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center) ;
  • Dai, Fuhong (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Yoo, Won Gi (Department of Medical Environmental Biology, Chung-Ang University College of Medicine) ;
  • Hong, Sung-Jong (Department of Medical Environmental Biology, Chung-Ang University College of Medicine)
  • Received : 2019.07.04
  • Accepted : 2019.08.01
  • Published : 2019.08.31

Abstract

Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including $TGF-{\beta}$ receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines ($IL-1{\beta}$, IL-6, and $TNF-{\alpha}$) as well as anti-inflammatory cytokines (IL-10, $TGF-{\beta}1$, and $TGF-{\beta}2$) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in $TGF-{\beta}1$, ~30-fold in $TGF-{\beta}2$, and ~3-fold in $TNF-{\alpha}$ compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.

Keywords

References

  1. Inclan-Rico JM, Siracusa MC. First Responders: Innate Immunity to Helminths. Trends Parasitol 2018; 34: 861-880. https://doi.org/10.1016/j.pt.2018.08.007
  2. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 2014: 149185. https://doi.org/10.1155/2014/149185
  3. Hong ST, Fang Y. Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 2012; 61: 17-24. https://doi.org/10.1016/j.parint.2011.06.007
  4. Kim TS, Pak JH, Kim JB, Bahk YY. Clonorchis sinensis, an oriental liver fluke, as a human biological agent of cholangiocarcinoma: a brief review. BMB Rep 2016; 49: 590-597. https://doi.org/10.5483/BMBRep.2016.49.11.109
  5. Qian MB, Utzinger J, Keiser J, Zhou XN. Clonorchiasis. Lancet 2016; 387: 800-810. https://doi.org/10.1016/S0140-6736(15)60313-0
  6. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V. A review of human carcinogens--Part B: biological agents. Lancet Oncol 2009; 10: 321-322. https://doi.org/10.1016/S1470-2045(09)70096-8
  7. Kim YJ, Choi MH, Hong ST, Bae YM. Proliferative effects of excretory/secretory products from Clonorchis sinensis on the human epithelial cell line HEK293 via regulation of the transcription factor E2F1. Parasitol Res 2008; 102: 411-417. https://doi.org/10.1007/s00436-007-0778-2
  8. Nam JH, Moon JH, Kim IK, Lee MR, Hong SJ, Ahn JH, Chung JW, Pak JH. Free radicals enzymatically triggered by Clonorchis sinensis excretory-secretory products cause NF-kappaB-mediated inflammation in human cholangiocarcinoma cells. Int J Parasitol 2012; 42: 103-113. https://doi.org/10.1016/j.ijpara.2011.11.001
  9. Pak JH, Kim DW, Moon JH, Nam JH, Kim JH, Ju JW, Kim TS, Seo SB. Differential gene expression profiling in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. Parasitol Res 2009; 104: 1035-1046. https://doi.org/10.1007/s00436-008-1286-8
  10. Pak JH, Moon JH, Hwang SJ, Cho SH, Seo SB, Kim TS. Proteomic analysis of differentially expressed proteins in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. J Cell Biochem 2009; 108: 1376-1388. https://doi.org/10.1002/jcb.22368
  11. Chaiyadet S, Smout M, Johnson M, Whitchurch C, Turnbull L, Kaewkes S, Sotillo J, Loukas A, Sripa B. Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production. Int J Parasitol 2015; 45: 773-781. https://doi.org/10.1016/j.ijpara.2015.06.001
  12. Ju JW, Joo HN, Lee MR, Cho SH, Cheun HI, Kim JY, Lee YH, Lee KJ, Sohn WM, Kim DM, Kim IC, Park BC, Kim TS. Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory-secretory products of Clonorchis sinensis adult worms. Proteomics 2009; 9: 3066-3078. https://doi.org/10.1002/pmic.200700613
  13. Wang C, Lei H, Tian Y, Shang M, Wu Y, Li Y, Zhao L, Shi M, Tang X, Chen T, Lv Z, Huang Y, Tang X, Yu X, Li X. Clonorchis sinensis granulin: identification, immunolocalization, and function in promoting the metastasis of cholangiocarcinoma and hepatocellular carcinoma. Parasit Vectors 2017; 10: 262. https://doi.org/10.1186/s13071-017-2179-4
  14. Smout MJ, Laha T, Mulvenna J, Sripa B, Suttiprapa S, Jones A, Brindley PJ, Loukas A. A granulin-like growth factor secreted by the carcinogenic liver fluke, Opisthorchis viverrini, promotes proliferation of host cells. PLoS Pathog 2009; 5: e1000611. https://doi.org/10.1371/journal.ppat.1000611
  15. Suttiprapa S, Matchimakul P, Loukas A, Laha T, Wongkham S, Kaewkes S, Brindley PJ, Sripa B. Molecular expression and enzymatic characterization of thioredoxin from the carcinogenic human liver fluke Opisthorchis viverrini. Parasitol Int 2012; 61: 101-106. https://doi.org/10.1016/j.parint.2011.06.018
  16. Bai X, Lee JY, Kim TI, Dai F, Lee TJ, Hong SJ. Molecular cloning and characterization of growth factor receptor bound-protein in Clonorchis sinensis. PLoS One 2014; 9: e85577. https://doi.org/10.1371/journal.pone.0085577
  17. Hu X, Zhou H, Hu F, Xu J, Zhao Y, Yu X. Recognition and characterization of TGF-beta receptor interacting protein 1 (TRIP-1) containing WD40 repeats from Clonorchis sinensis by bioinformatics, cloning, and expression in Escherichia coli. Parasitol Res 2008; 103: 1151-1158. https://doi.org/10.1007/s00436-008-1109-y
  18. Yoo WG, Kim DW, Ju JW, Cho PY, Kim TI, Cho SH, Choi SH, Park HS, Kim TS, Hong SJ. Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 2011; 5: e1208. https://doi.org/10.1371/journal.pntd.0001208
  19. Vennervald BJ, Polman K. Helminths and malignancy. Parasite Immunol 2009; 31: 686-696. https://doi.org/10.1111/j.1365-3024.2009.01163.x
  20. Choi YK, Yoon BI, Won YS, Lee CH, Hyun BH, Kim HC, Oh GT, Kim DY. Cytokine responses in mice infected with Clonorchis sinensis. Parasitol Res 2003; 91: 87-93. https://doi.org/10.1007/s00436-003-0934-2
  21. Choi W, Chu J. The characteristics of the expression of heat shock proteins and COX-2 in the liver of hamsters infected with Clonorchis sinensis, and the change of endocrine hormones and cytokines. Folia Parasitol (Praha) 2012; 59: 255-263. https://doi.org/10.14411/fp.2012.036
  22. Maeng S, Lee HW, Bashir Q, Kim TI, Hong SJ, Lee TJ, Sohn WM, Na BK, Kim TS, Pak JH. Oxidative stress-mediated mouse liver lesions caused by Clonorchis sinensis infection. Int J Parasitol 2016; 46: 195-204. https://doi.org/10.1016/j.ijpara.2015.11.003
  23. Wi HJ, Jin Y, Choi MH, Hong ST, Bae YM. Predominance of IL-10 and TGF-beta production from the mouse macrophage cell line, RAW264.7, in response to crude antigens from Clonorchis sinensis. Cytokine 2012; 59: 237-244. https://doi.org/10.1016/j.cyto.2012.04.021
  24. Yan C, Wang YH, Yu Q, Cheng XD, Zhang BB, Li B, Zhang B, Tang RX, Zheng KY. Clonorchis sinensis excretory/secretory products promote the secretion of TNF-alpha in the mouse intrahepatic biliary epithelial cells via Toll-like receptor 4. Parasit Vectors 2015; 8: 559. https://doi.org/10.1186/s13071-015-1171-0
  25. Ninlawan K, O'Hara SP, Splinter PL, Yongvanit P, Kaewkes S, Surapaitoon A, LaRusso NF, Sripa B. Opisthorchis viverrini excretory/secretory products induce toll-like receptor 4 upregulation and production of interleukin 6 and 8 in cholangiocyte. Parasitol Int 2010; 59: 616-621. https://doi.org/10.1016/j.parint.2010.09.008
  26. Hongsrichan N, Intuyod K, Pinlaor P, Khoontawad J, Yongvanit P, Wongkham C, Roytrakul S, Pinlaor S. Cytokine/chemokine secretion and proteomic identification of upregulated annexin A1 from peripheral blood mononuclear cells cocultured with the liver fluke Opisthorchis viverrini. Infect Immun 2014; 82: 2135-2147. https://doi.org/10.1128/IAI.00901-13
  27. Zhou L, Shang M, Shi M, Zhao L, Lin Z, Chen T, Wu Y, Tang Z, Sun H, Yu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase inhibits TGF-beta1-induced expression of pro-fibrogenic genes through attenuating the activations of Smad3, JNK2, and ERK1/2 in hepatic stellate cell line LX-2. Parasitol Res 2016; 115: 643-650. https://doi.org/10.1007/s00436-015-4782-7
  28. Matchimakul P, Rinaldi G, Suttiprapa S, Mann VH, Popratiloff A, Laha T, Pimenta RN, Cochran CJ, Kaewkes S, Sripa B, Brindley PJ. Apoptosis of cholangiocytes modulated by thioredoxin of carcinogenic liver fluke. Int J Biochem Cell Biol 2015; 65: 72-80. https://doi.org/10.1016/j.biocel.2015.05.014
  29. Smout MJ, Sotillo J, Laha T, Papatpremsiri A, Rinaldi G, Pimenta RN, Chan LY, Johnson MS, Turnbull L, Whitchurch CB, Giacomin PR, Moran CS, Golledge J, Daly N, Sripa B, Mulvenna JP, Brindley PJ, Loukas A. Carcinogenic parasite secretes growth factor that accelerates wound healing and potentially promotes neoplasia. PLoS Pathog 2015; 11: e1005209. https://doi.org/10.1371/journal.ppat.1005209
  30. Flynn RJ, Mulcahy G. The roles of IL-10 and TGF-beta in controlling IL-4 and IFN-gamma production during experimental Fasciola hepatica infection. Int J Parasitol 2008; 38: 1673-1680. https://doi.org/10.1016/j.ijpara.2008.05.008
  31. Apte RN, Voronov E. Interleukin-1--a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 2002; 12: 277-290. https://doi.org/10.1016/S1044-579X(02)00014-7
  32. Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer 2006; 42: 745-750. https://doi.org/10.1016/j.ejca.2006.01.012
  33. Sripa B, Thinkhamrop B, Mairiang E, Laha T, Kaewkes S, Sithithaworn P, Periago MV, Bhudhisawasdi V, Yonglitthipagon P, Mulvenna J, Brindley PJ, Loukas A, Bethony JM. Elevated plasma IL-6 associates with increased risk of advanced fibrosis and cholangiocarcinoma in individuals infected by Opisthorchis viverrini. PLoS Negl Trop Dis 2012; 6: e1654. https://doi.org/10.1371/journal.pntd.0001654
  34. Yan C, Wang L, Li B, Zhang BB, Zhang B, Wang YH, Li XY, Chen JX, Tang RX, Zheng KY. The expression dynamics of transforming growth factor-beta/Smad signaling in the liver fibrosis experimentally caused by Clonorchis sinensis. Parasit Vectors 2015; 8: 70. https://doi.org/10.1186/s13071-015-0675-y
  35. Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, Eguchi H, Ishii H, Nagano H, Doki Y, Mori M. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer 2013; 49: 1725-1740. https://doi.org/10.1016/j.ejca.2012.12.002

Cited by

  1. CD19 + CD1d hi CD5 hi B Cells Can Downregulate Malaria ITV Protection by IL-10 Secretion vol.8, 2020, https://doi.org/10.3389/fpubh.2020.00077
  2. Dopaminergic antagonists inhibit bile chemotaxis of adult Clonorchis sinensis and its egg production vol.14, pp.3, 2019, https://doi.org/10.1371/journal.pntd.0008220
  3. Bile Ductal Transcriptome Identifies Key Pathways and Hub Genes in Clonorchis sinensis-Infected Sprague-Dawley Rats vol.58, pp.5, 2019, https://doi.org/10.3347/kjp.2020.58.5.513
  4. The Dark Side of the Force: When the Immune System Is the Fuel of Tumor Onset vol.22, pp.3, 2019, https://doi.org/10.3390/ijms22031224
  5. Spirocerca lupi Proteomics and Its Role in Cancer Development: An Overview of Spirocercosis-Induced Sarcomas and Revision of Helminth-Induced Carcinomas vol.10, pp.2, 2019, https://doi.org/10.3390/pathogens10020124
  6. Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic target vol.67, 2019, https://doi.org/10.1016/j.ebiom.2021.103375
  7. Omega-Class Glutathione Transferases of Carcinogenic Liver Fluke, Clonorchis sinensis, Modulate Apoptosis and Differentiation of Host Cholangiocytes vol.10, pp.7, 2019, https://doi.org/10.3390/antiox10071017