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Abstract 
 

In human activity recognition system both static and motion information play crucial role for 
efficient and competitive results. Most of the existing methods are insufficient to extract video 
features and unable to investigate the level of contribution of both (Static and Motion) 
components. Our work highlights this problem and proposes Static-Motion fused features 
descriptor (SMFD), which intelligently leverages both static and motion features in the form 
of descriptor. First, static features are learned by two-stream 3D convolutional neural network. 
Second, trajectories are extracted by tracking key points and only those trajectories have been 
selected which are located in central region of the original video frame in order to to reduce 
irrelevant background trajectories as well computational complexity. Then, shape and motion 
descriptors are obtained along with key points by using SIFT flow. Next, cholesky 
transformation is introduced to fuse static and motion feature vectors to guarantee the equal 
contribution of all descriptors. Finally, Long Short-Term Memory (LSTM) network is utilized 
to discover long-term temporal dependencies and final prediction. To confirm the 
effectiveness of the proposed approach, extensive experiments have been conducted on three 
well-known datasets i.e. UCF101, HMDB51 and YouTube. Findings shows that the resulting 
recognition system is on par with state-of-the-art methods. 
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1. Introduction 

Recently, automatic human activity recognition has become a great concern topic in the field 
of computer vision due to its potential and practical applications in different field such as 
human computer interaction, sports, healthcare, surveillance and robotics. Video captured 
from different devices show lots of variations such as variations in environment and variations 
in recording setting. Variations in environment are due to the occlusion, background cluttering, 
camera motion, noise and view point. Variations in video recording also cause different kinds 
of noise in different lighting conditions. To address these challenges, there is immense need of 
effective and robust activity recognition system to achieve best performance. 

Information in videos are in two-dimensional domain such as static information and motion 
pattern. Static information is related to the background and still objects, which are very 
important for recognizing an activity in video. Motion information also plays an important role 
to capture activities related to each actor in the video independently. Therefore, to achieve the 
ideal recognition system, it is necessary to leverage powerful features from both static and 
motion components. A number of reference papers have suggested that the combination of 
different features extracted from different channels can make the framework more specific and 
robust. 

In the past decade, considerable pioneer research efforts have been carried out for action 
recognition and changed rapidly. Early attempts are an extension of static image based 
representations and pattern recognition. Many researchers designed descriptors and their 
extensions on Hand-Crafted features to characterize visual appearance and motion dynamics. 
HOG (Histogram of oriented gradient) [1] extended into HOG-3D descriptor [2] by kleser et al. 
Scovanner et al. expanded SIFT (Scale-invariant Feature Transform) into SIFT-3D [3].  
Spatial interest point method has been extended into STIP (Spatio-temporal Interest Points) 
[4]. These aforementioned techniques are easy to implement but very labor intensive. Many 
trajectory-based approaches [5-8] have been proposed to explore the underlying motion. In 
these approaches, trajectories are formed in groups to extract features and then local 
descriptors such as HOG, HOF (Histogram of Optical Flow) [9] and MBH (Motion Boundary 
Histogram) [7] are computed to represent shape, appearance and motion. These 
trajectory-based approaches achieved remarkable results and able to present complicated 
motion effectively. However, they suffer from number of weaknesses such as presence of 
redundant trajectories caused by camera motion and background. In addition, the extraction of 
trajectories and computation of descriptors is very complicated and may lack discriminative 
power for action recognition. 

More recently, Convolutional Neural Network (CNN) [10 - 12] has become the research hot 
spot due to its pre-trained ability and automatic learning of deep representations from raw 
action videos. One of the prominent method is 3D CNN [13 -15], which is 3D extension of the 
standard 2D CNN by considering time-domain as third dimension to simultaneously encode 
both spatial and temporal cues. These deep learning methods provide high discriminative 
capacity and obtained promising results for action recognition. However, CNN based method 
only capture the temporal motions in short scale and lack the ability to capture long-range 
temporal dynamics. Moreover, CNN based method ignore the intrinsic difference between 
spatial and temporal domain. This problem is addressed by recurrent neural network [16 - 18], 
which shown remarkable performance on feature representation and temporal dynamic 
modeling. Especially, LSTM [19] is very popular for its effectiveness for modeling video 
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frames. Most of the research works [16, 18, 20] presented combination of deep learning 
network and LSTM, in which input to the LSTM are the high-level features extracted from the 
top fully-connected layer of CNNs. 

In the light of the above discussion, this work is focused on fusion of both static and motion 
components for robust and efficient video activity recognition. We argue that merging of 
features extracted from different domains can really boost up the generalization ability of 
action recognition. Handcrafted methods are more capable of capturing motion patterns in 
longer temporal duration while high-level features can complement the low-level features.  
This work intelligently leverage the CNN generated static features and manually generated 
motion features. First, we propose the relevant trajectory method to reduce the computation 
and irrelevant background trajectories then we introduce the cholesky decomposition method 
to make sure the equal contribution of each (static and motion) features. Finally, the fused 
vectors are submitted to LSTM network to discover dynamic temporal patterns to get the high 
level of classification. Several extensive experiments have been carried out on different 
publically available datasets and achieved better results, which make our system on par with 
existing state-of-the-art approaches. The main contributions of this research work are 
summarized as follows: 
 

1- Our propose end-to-end system, successfully leverage multiple modalities (hand 
crafted, deep learning and recurrent neural network) and beneficial for better 
recognition accuracy. 

2- To reduce the background irrelevant trajectories, we apply central region process to 
get the most relevant trajectories, since object of interest mostly occupies the central 
region. 

3- We introduce an effective fusion model for static and motion based on cholesky 
transformation, the combined fused descriptor contain the essence of both domain and 
vital for activity recognition 

4- Different experiments have been conducted by varying static-motion contribution 
ratio, we achieve the optimum contribution value, which is beneficial for a better 
recognition rate.     

5- LSTM network is used to capture underlying temporal dynamics and experimentally 
demonstrate the super performance of our method when evaluated on publically 
benchmark datasets.  

The rest of article is organized as follows: Section 2 provides an overview of the related 
works. In section 3, we explain our approach in detail. Fusion and classification methods 
are addressed in section 4 and section 5 respectively. In Section 6, we demonstrate the 
experimental evaluation. Finally, conclusion is drawn in section 7. 

2. Related Work 
Our proposed approach is based on multi-model system, so we distribute our related work into 
following different recognition models. 

2.1 Hand-crafted based representations 
Early research efforts mainly rely on hand-crafted local features and have become effective 
representations. Most of theese approaches used detectors to define informative regions, 
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which are robust to video noise and background clutter. In [4], Harris3D detector has been 
proposed to effectively extract the salient regions. Hessian detector [20] is used for blob 
detection in images. 3-D SIFT [3] and cuboid [21] have shown effectiveness and robustness 
against noise and partial occlusion. These aforementioned approaches commonly focus on 
extracting texture and edge characteristics defined by interest points. However, these 
approaches blend together different types of motion related to human action thus resulting in a  
loss of discriminative power. Meanwhile many trajectory-based feature extraction methods 
have been introduced to facilitate motion information in effective way. Dense trajectory 
features (DTF) [5], make it possible to separate different types of motion information from 
background information but these methods do not effectively blend the different types of 
motion related to a human action. Many hand-crafted local descriptors such as HOG-3D [2], 
histogram of oriented gradient (HOG) [1], histogram of optical flow (HOF) [9] and motion 
boundary histogram (MBH) [7] have shown remarkable performance. These approaches 
extract the 3D volume around the interest points. However, unable to capture the local 
contents and classify the complex actions. Improved DTF (iDTF) [8], which is considered as 
state-of-the-art method makes use of sample interest points and optical flow to extract dense 
trajectories and represents each trajectory using different descriptors such as (HOG), (HOF), 
(MBH). IDTF uses a human detector to suppress camera motion by estimating homography 
and able to effectively represent the complex motion of human action. However, various 
issues such as presence of irrelevant and redundant trajectories and computational complexity 
still need to be addressed in satisfactory way.    

2.2 Deep learning-based representations 

Due to the remarkable success of deep CNNs in several domains such as speech recognition, 
object recognition and image classification, recent research is directed to deep learning-based 
models for action recognition. Many early methods are based on convolution neural networks 
(CNNs) to learn deep video representations. Ji et al. [13] and Tran et al. [14] extended 2D 
ConvNet to a video domain and tested ConvNet with deep architecture on short datasets and 
large datasets respectively. Two-stream ConNet designed by simonyan et al. [11] containing 
spatial and temporal dependecies has achieved remarkable performance. Deep ConNets are 
automatic end-to-end trainable networks, and there engineering process for feature 
representation is not labour-intensive and complicated. We can characterized the deep features 
by their highly sparsity and discriminative capacity. Despite these strengths, deep learning 
based approaches still suffer from a number of limitations. CNN-based networks only capture 
temporal dynamics and ignore the intrinsic difference between spatial and temporal domain. 
Another problem associated with these methods is that they highly rely on large training 
datasets while most of the available datasets are very small. 

2.3 RNN based representations 
Many researchers learn video representation by using Recurrent Neural Network (RNN) due 
to its ability for modelling video sequences and its multi-disciplinary applications. Especially, 
LSTM [19] overcome the weaknesses of short-snippet learning approaches by capturing the 
long range temporal dynamics and has proven very successful in actions prediction and 
sequence generation tasks. In most of the research works [16, 18, 22, 23], high-level features 
abstracted from the fully-connected layer of CNN are the input of LSTM, which lack the fine 
action details in video sequences. Multiple layers recurrent networks and various feature 
fusion techniques have been introduced in [24 - 25], which are indeed very effective in action 
recognition tasks. Recently, attention based methods [26 - 27] have been combined into LSTM 
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to emphasizing the key spatial-temporal segments. However, in [26], attention mechanism 
largely ignore the spatial cues while method presented in [27] ignores the motion cues of 
actions. Appearance and motion cues are integrated in [28], which lacks rich spatio-temporal 
components among video sequences. 
 

2.4 Fusion based representations 
Information extracted from different channels/domain can be very effective in various 
recognition tasks. 3D convolution is applied on stacke of images in [13 - 14] to perform feature 
level fusion. Auto-encoder and correlation analysis are proposed in [29] to fuse the features 
obtained from RGB and depth images. Direct concatenation of Flow and RGB features is 
introduced in [30 - 31]. Many authors proposed late fusion techniques at the output level in 
their research work [10, 30] to train two-stream network. Different from previous proposed 
method, our work intelligently incorporates the static and motion cues obtained from different 
domain. Our propose fusion method provides the power to control the equal contribution of 
each domain in exact numbers. The resultant fused descriptor is then input to the LSTM 
network to identify the spatio-temporal regions and certainly beneficial for action recognition 
enhancement.   
 
 

 

 
 
                                   Fig. 1. Overall framework of our propose approach 

3. Methodology 
This section illustrates our framework, which input an untrimmed snippets video and classify 
the human activity accordingly. The overall flowchart of our method is demonstrated in Fig. 1. 
We explain the detail description of each component i.e. extraction of static and motion 
features, fusion method and activity classification by LSTM in subsequent sections. 

3.1 Extraction of Static Features  
First, we capture static features of video by using widely used two-stream 3D ConNets [13]. 
Static features include still objects and background information which is very important for 
determining an action in such scenario, where body movements of group of actors are similar 
such as group of  people fighting is nearly related to body movement of sports event e.g., 
wrestling. We can decompose a video into two stream i.e. RGB stream and flow stream. RGB 
frame represented by high dimensional features such as background, objects and actors. As, 
our frame work consist of different modalities to learn static and motion features. This section 
is focus on abstracting static features. RGB frames are fed into classic deep convolutional 
network similar to the two-stream 3D ConNets [13]. Our framework utilizes only spatial 
stream and accept RGB clips to extract static features, as RGB single frame usually encode 
static information.    
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CNNs is a depth model consists of trainable filters and pool operations for abstracting 
spatiotemporal features hierarchy with increasing degree of complexity. Increasing number of 
layers enhance the degree of extraction of features learned by filters. Usually, bottom layers 
are used to learn underlying features such as edge and color and final layers captures the 
complete key features. There are different variants of CNNs are available and two-stream 3D 
ConNets [13] is very popular among them, which is ideal network to learn spatio-temporal 
information simultaneously in end-to-end fashion. The architecture of this network consists of 
8 convolutional layers, 5 pooling layers, 2 fully connected layers and then final softmax output 
layer. All 3D convolutional kernels are 3 x 3 x 3 with stride 1 and all pooling layers are 2 x 2 x 
2 with stride 2 except pooling layer1. Pooling layer 1 has the stride of 1 x 2 x 2 with intention 
to retain the spatial information in early phases. We utilize one-stream 3D ConNets, which 
takes only RGB clips as input. It adopts spatial 3D ConNet to extract static features for each 
video sequence clip. Clip level static features are captured from the first fully connected layer, 
which has 4096 output units. 

3.2   Extraction of Motion Features  
This section highlights the extraction of motion information in the form of motion descriptors. 
We adopt hand crafted feature technique to capture motion patterns by arguing that traditional 
techniques can be extended to longer motion duration. So, it is possible to obtain and 
discriminate motion classes. Both CNN and traditional descriptors techniques process the 
input information in a region just like sliding window. Most of the traditional hand-crafted 
techniques follow the three basic steps to capture the feature vectors. 1- Detection of key/ 
interest points. 2- Extraction of trajectories. 3- Computation of descriptors to align the 
trajectories to obtain relationship among the trajectories. 

3.2.1 Key point detection 
A video frame can be represented by evaluating the feature such as HOG, HOF and MBH on 
the group of key points. Instead of determining interest points, key points can be captured to 
compute local motion descriptor. Scale invariant feature transform (SIFT) [32 - 33] is suitable 
candidate to detect the key points. In our method, we utilize SIFT detector to map the spatial 
contents of frame such as location, scale and invariant features. A special kind of Gaussian 
function, which is also known as scale kernel function is used to extract features at different 
scale. At any point (x, y) of the frame with scale ϕ, the Gaussian function can be given as G (x, 
y, ϕ). If scale space function is defined as F(x, y, ϕ) of an image I (x, y, ϕ), the difference of 
Gaussian function L can be computed by following given equation (1). 

 
     L(x, y, ϕ) = F(x, y, Cϕ) - F(x, y, ϕ)                       (1) 

 
Where C is a constant. This difference of Gaussian function provides the scale-invariant points, 
which are also known as key points. So, it is likely to be expected, these multi-scale space 
based key points can characterize something change occur in better way than those points 
using single scale only. 
 
 3.2.2 Extraction of Selected Trajectories 
  
Trajectories are very essential to capture the local information of video, which guarantees the 
good estimation of foreground motion. The corresponding trajectories can be extracted by 
tracking the key points frame by frame. The method of tracking the key points is essentially 
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similar as tracking the interest points [34 - 35]. In our method, we utilize these trajectories for 
computation of shape descriptor, which is very important component for activity recognition. 
We adopt the method of [34] for tracking spatial scale points by using median filter with one 
modification i.e., replacement the optical flow with SIFT flow [36 - 37]. The position of any 
point Pt = (xt, yt) in frame It can be tracked in frame It+1 by applying median filter on SIFT flow 
within 3 x 3 patch: 
                         Pt = (xt, yt) +(K3 x 3   *  ωt )|( xt, yt)                                 (2) 

Where, K is the medial filter kernel of size 3 x 3 pixels. Once the SIFT flow field is computed, 
key points can be tracked without additional cost. The points (Pt, Pt+1, Pt+2...) of subsequent 
frames can be concatenated to form trajectory. 
     In order to achieve the computation efficiency, we argue that there are many redundant 
irrelevant background trajectories, which can cause to increase the computation complexity. 
To tackle this problem, we introduce very simple method to reduce the background trajectories 
by assuming that   object of interest is often occupies the middle portion of the frame and so the 
relevant trajectories are. We choose the middle region of frame by selecting width and height 
as two-third of the original frame. If T is the original extracted trajectories, so Tr i.e. relevant 
trajectory can be selected or rejected by following criteria: 

 

                          Tr = select;if(x , y ) CR

reject;if(x , y ) CR
r r

r r

 ⊂ 
 

⊄  
                                         (3) 

Where, (x , y )r r  is the mean value of the coordinates (x, y) of selected trajectory Tr. In this 
way, we can ignore those trajectories which are related to background and only relevant 
trajectories can be selected.  
 
3.2.3 Computation of Descriptors 
 
Optical flow is considered as the most popular method for capturing motion information in 
video frames. It can be define as the displacement of pixel intensity X (x, y) in two consecutive 
frames i.e. t and t+1 and can be defined as X (x-α, y-β), where vector (α, β) is called optical 
flow. However, optical flow may not capture the change of semantics and motion accurately, 
in addition optical flow process is very complex and gets overwhelmed by the camera motion 
with respect to background. Recently, SIFT flow [36 - 37] is introduced as an alternative way 
and provides an effective way to demonstrate the displacement between key points in two 
consecutive frames.  
     SIFT flow furnishes a compact way for obtaining the local descriptor and it is invariant to 
scale changes. We can utilize the key points to compute the gradient at point X and its 
surrounding grid points. A histogram can be constructed commonly known as histogram of 
oriented optical flow (HOF). The HOF can be defined as the probability density function of the 
optical flow at any particular point in the frame. It has been observed that it is very beneficial 
to decompose the gradient of optical flow at point X and surrounding points into its x and y 
directions. So, histogram known as motion boundary histogram (MBH) and can be 
constructed in both directions x and y respectively so we have MBHx and MBHy. The motion 
boundary histogram (MBH) is well known to cancel out the camera motion and distortions 
caused by camera motion. Thus, Sift flow can be utilized to represent a video by describing the 
key points using histogram of oriented gradients at the multiple scales instead of evaluating 
single scale at the group of interest points. 



3606                                                                Sheeraz et al.: Video Representation via Fusion of Static and Motion Features 
Applied to Human Activity Recognition 

     The Sift flow w for the key point p can be obtained by solving the discrete optimization 
problem as in [38] for the frame i. All the different terms associated with sift flow can be 
represented by energy function E(w), and can be given as in equation (4): 

 
Ei(w) = si(p) + wi(p) + [ui(p) + vi(p)]                                           (4) 

Where, w(p) and s(p) are the flow vector and SIFT descriptor respectively at pixel point p of 
the ith frame. The last term, allow us to differentiate the vertical v(p) and horizontal u(p) flow. 
In this way, we can capture the motion feature vectors, which are useful to maintain the 
robustness against the rotation scale and viewpoints. 
      In our method, we treat the Sift flow in the similar fashion as optical flow to compute the 
histogram of oriented Sift flow HOF-S and also motion boundary histogram in both direction x 
and y known as MBH-Sx and MBH-Sy. We split the key points and its neighbour points in 16 x 
16 grid of four cells of dimension 4 x 4 in the frame. At each of the key point the gradient of 
pixel intensity variation can be computed. The space coordinate in every cell is divided in to 8 
different bins to quantize the gradient orientation. The histogram of orientations for each cell 
can be constructed by counting the number of orientation in each of the 8 bins. So there are 16 
cells in a frame and histograms of each individual cell can be combined to obtain 128 feature 
vectors. If there are N key points then each frame of video can be represented as N x 128 
dimensional feature vector. In this way a set of feature vectors can be evaluated by using key 
points in the form of HOF-S, MBH-Sx and MBH-Sy. Moreover, we can compute the 
trajectory shape descriptor (TSD) by utilizing selected trajectories extracted in our previous 
subsequent section 3.2.2. These trajectories are traced by the key points and helpful in 
determining the movement of key points across the video. We set the maximum length of 
trajectory as 17 to avoid the drifting problem.  
 

3.3 Feature Coding Scheme (iVLAD) 
We adopt improved vector of locally aggregated descriptor (iVLAD) [39] as feature 
representation method to aggregate all residual vectors i.e. motion feature descriptors and 
shape feature descriptors. In many recent research work, VLAD achieved the better results 
than other mid-level video representation schemes such as BoW and iFV. First, difference 
between each feature descriptor and its closest center is computed as residual vector and then 
L2 normalization is applied to the residual vectors to yield the final VLAD vector. This 
process ensures the equal contribution of all descriptors.  

4. Fusion Method 
Fusion of information extracted from several domains and channels can make the method 
more specific and enhance the robustness in activity recognition tasks. Our extracted static and 
motion features define the internal relationship but the final accuracy depends on the ratio of 
contribution of each domain. Our fusion method is based on Cholesky decomposition, which 
has the tendency to precisely control the contribution of both static and motion domains 
empirically for the final fused descriptor. An abstract version of cholesky transformation is 
described below. 
     According to cholesky transformation, two random variables with unknown correlation can 
be transformed into new variables with known correlation. If R and S are two random variables 
without any correlation and these two random variables can be transformed into two new 
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random variables (Y and Z) with known correlation ρ. This transformation can be represented 
by equation (5). 

                Y
Z
 
  

  =  1
ρ



      
0

21 ρ−





 
R

S

 
× 
 

                                               (5) 

 
       So that, Y = R 

and 

                                         Z = 21R Sρ ρ+ −                                                           (6) 
The above representation ensures the correlation between two transformed random variables Y 
and Z is ρ. By following the above property of the cholesky transformation, we can fuse our 
static and motion vectors with the known correlation. Let suppose A and B be static and motion 
vectors respectively. Cholesky transformation can be applied to these two static and motion 
vectors with the correlation ρ1 in the following manner. 
  

                                           Y
Z
 
  

  = 
1

1ρ





      
0

21 1ρ−





 
A

B

 
× 
 

                                                   (7)                   

  
      Therefore, Y = A 

              

                                          Z =  21 11B Bρ ρ+ −                                (8)                                             
Similarly, to control and guarantee the contribution of both vectors, this transformation can be 
applied to motion vector B and static vector A with correlation ρ2. 
 

                                젨S
M
 
  

 = 1

2ρ




      
0

21 2ρ−





 B
A
 ×  

                     (9) 

 
                                   S = B 

                                         M = 21 22A Aρ ρ+ −                                   (10) 
Again, cholesky transformation guarantees the following two properties. 
 

1) ρ1 is the correlation between vectors A and B. 
2) ρ2  is the correlation between vectors B and A. 

 
Therefore, if the values for ρ1 and ρ2 are selected in such a way that they satisfied the following 
rule, 

                             21 12ρ ρ= −                                         (11) 

In this way, it can guaranteed that Z = M, ∀A, B, ρ1, ρ2. Hence, the resultant vector E can be 
obtained by following relation,   
 
                               E = Z = M                                                           (12) 
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Where the correlation between E and A is ρ1 and the correlation between E and B is ρ2. Here A 
and B represent our extracted static and motion vectors whereas E represents the resultant 
vector. This representation lead us to an important intuition: by choosing the value of ρ1, we 
can choose the degree to which the static and the motion features contribute for our resultant 
vector. In our upcoming section 6.3.2, it is also shown, how this property is used to explore, 
the optimal contribution of both static and motion domain information for recognising actions.   

5. Action Prediction by LSTM Network 

5.1 Long Short-Term Memory (LSTM) 
For analysing the hidden sequential patterns, it is natural choice to use RNN to encode the 
temporal structure of extracted sequential features. In video visual information is represented 
in many frames which help in understanding the context of an action. RNN can interpret such 
sequences but in case of long term sequences, it usually forget the earlier input sequence. 
LSTM has been designed to mitigate the vanishing problem and to learn the long-term 
contextual information of temporal sequence. LSTM [19] is one kind of recurrent networks, 
which can capture the long-term dynamics and preserves sequence information overtime. In 
addition, in LSTM gradient does not tend to vanish when trained with back propagation 
through time and it can keep the certain state in memory for longer period of time. Its special 
structure with input, output and, and control gates control the long term sequence pattern 
identification. The gates are adjusted by sigmoid unit that learns during training when to open 
and close.  

 

⊗

⊗

⊗

xt it

gt

ft

to

tc ht yt

wxi

wxg

wxf

wxo

whi

whg

whf

who  
                                           Fig. 2. The architecture of LSTM Unit. 
 
      Fig. 2 demonstrates the architecture of a LSTM cell with the working of three existing 
gates. xt, ct, ht and yt stand for input vector, cell state, hidden state and output at the tth state, 
respectively. The output yt depends on hidden ht state, while ht depends on not only the cell 
state ct but also its previous state. Intuitively, the LSTM has the capacity to read and write to its 
internal memory, and hence maintain and process information over time. LSTM neuron 
contains an input gate it, a memory cell ct, a forget gate ft, and an output gate ot. At each time 
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step t, it can choose to write, read or reset the memory cell through these three gates. This 
strategy helps LSTM to access and memorize information in many steps.  
 
     In data flow process, for input xt at time step t, a LSTM cell preserves the last cell state ct-1 
and last cell output ht-1. The current cell state can be represented by ct, which is the summation 
of the previous memory cell state ct-1 and a function of the current input and previous hidden 
state. The output value and the value of the three gates (it, ft and ot) can be computed by Eq. (13) 
to Eq. (18) which demonstrates the operation of temporal modelling performed in LSTM unit. 
                                                       
                                        it = S(wxi  xt + Whi ht-1 +bi)                                                             (13) 

 

                                        ft = S(wxf  xt + Whf ht-1 +bf)                                                        (14) 
                                        ot = S(wxo  xt + Who ht-1 +bo)                                                     (15) 
                                        gt = tanh(wxg  xt + Whg ht-1 +bg)                                           (16) 

 

                                        ct = ft ⊗ ct-1 + it ⊗ gt                                                              (17)  
                                        ht = ot ⊗ tanh (ct )                                                                  (18)  
 
where S is denoted as sigmoid non-linearity function, tanh is the hyperbolic tangent of 
non-linearity function and ⊗ indicates the product between elements and the gate value. The 
cell state and output are computed step by step to extract long-term dependencies. Based on 
the LSTM unit, for an input xt at time step t, the LSTM computes a hidden/control state ht and 
a memory cell state ct, which is an encoding of everything the cell has observed until time t.  

5.2 Prediction process 
We can represent the generated fused feature vectors as a set of t D - dimensional 

features as E = ψfv({Xi}t=1) . If ei is the vector of the i-th frame (time step). Let E be an input 
sequence(e1, ..., eT) and y be an output sequence(y1, ..., yT). An LSTM then maps E to y by 
using series of intermediate operation as mentioned in Eq. (13) to Eq. (18):  
                 

yt = Why ht + by                                                             (19) 
 
where, W and b are the trained parameters of LSTM, which denotes the weights and the biases 
of input layer and the hidden layer respectively. The final single label prediction for a video 
can be produced by using softmax classifier. Softmax layer can be utilized to achieve the 
M-way class scores for a given video sequence. This single prediction can be achieved by 
averaging the label probabilities by the Eq. (20). 
         

  P (  = 1) = softmax (yt) = softmax (Whyht + by)                 (20)  

Where t is the the current time step, and q Q∈  is a prediction. But it is expected that the 
prediction cannot be very accurate and may be there is large number of uncertainty at the 
beginning. To take this fact into account, we modify the loss function, Eq. (20), by adding an 
exponential term: 

     ( )/2

1 1
log( )

N T
T t q

t
n t

Loss e y− −

= =

= −∑∑              (21)  

where is the output of the softmax layer, i.e., the estimated probability of the prediction 

being of category q at time step t. N is the number of the training sequences during the training. 



3610                                                                Sheeraz et al.: Video Representation via Fusion of Static and Motion Features 
Applied to Human Activity Recognition 

The implication of this modified loss function is that it discounts those predictions at the 
beginning, or in other words, the importance of the prediction grows with time. 

       6. Experiments  
In this section, the proposed approach is experimentally evaluated on three well-known 
benchmark human action datasets: UCF101 [40], HDMB51 [41] and YouTube [42]. The 
description of these datasets, experimental setup and comparative analysis are presented in 
following subsequent sections. 

6.1 Description of Datasets 
The UCF101 dataset [40] is widely adopted benchmark for human action recognition and also 
the extension of UCF50. It comprises of 101 action classes and around 100 video clips are 
associated with each action class. There are 13,320 video clips in total. Most of the video clips 
are realistic, clean and user-uploaded videos with cluttered background and camera motion. 
We adopt validation scheme of the THUMOS13 challenge [43] and follow the three 
testing/training split for performance evaluation by reporting average recognition accuracy. 
The HDMB51 dataset [41] is the large collection of variety of realistic videos ranging from 
YouTube and Google videos to digitized videos collecting from various sources. In total, there 
are 6,766 manually annotated video sequences of 51 different action categories and each 
category containing at least 100 video clips. This dataset is very challenging and complex as it 
contains videos with more interclass difference and complicated background. For 
experimental setting, we follow the original evaluation guidelines [45] using three different 
testing/training splits. Each split with each action class has 30 clips for testing and 70 clips for 
training. We report the average recognition accuracy over these three splits. 
The YouTube dataset [42] comprises of total 1168 videos with 11 different action classes. 
Sequences in each class are grouped into 25 categories and in each category, there are at least 
4 action clips. We adopt the validation protocol as given in [42] by using leave-one-out 
strategy. This strategy involves one fold as testing videos and rest of the folds for the training 
videos. 

6.2 Experimental Setup and Parameter Tuning 
This section explains the implementation details for the validation scheme of benchmark 
datasets and training of 3D convolutional network. As UCF101 is larger than HMDB51 
dataset so we use it to train 3D convolutional network initially, and transfer the learned model 
on HMDB51 dataset for extraction of deep features. We use split1 of UCF101 to extract the 
deep features. Caffe toolbox is used for ConvNet implementation while OpenCV 
implementation is used for extraction of trajectories and for implementation of LSTM network, 
we utilize the code provided by [16]. All results are obtained on a single Geforce GTX Titan 
3.6GHZ with 6 GB RAM, not using any parallel processing. 3D convolutional net is trained on 
I380K and fine-tune the model parameter of UCF101 at initial learning rate of 0.003 and is 
divided by 2 after every 150K iterations. The optimization is stopped at 1.9M iterations.  

6.3 Experiments and Comparative Analysis 
To analyse the richness and effectiveness of our proposed method in the context of action 
recognition, we describe series of experiments. The experimental results and comparative 
analysis are presented in subsequent sections. 
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6.3.1 Number of Generated Trajectories 
In this section, we evaluatedour approach in terms of number of trajectories generated. As we 
mentioned earlier, most of traditional methods are based on trajectories formation method. 
However, there may be the presence of many irrelevant and invalid trajectories caused by 
background and camera movement and processing of these extra trajectories is very 
complicated process. To address this problem, we propose central region process to capture 
irredundant and most relevant trajectories. We use the 320 different sample videos with 
average frame size of 335 x 240 pixels from YouTube dataset and also101 videos from the 
action class pushing of HMDB51 dataset with average frame size of 335 x 240 pixels. Fig. 3 
illustrates the number of trajectories generated by different trajectory based methods. We 
compare our central region (CR) approach method with dense trajectories (DT) [5], ordered 
trajectories (OD) [6] and trajectories rejection (TR) [45] method. According to the results, our 
approach generates minimum number of trajectories which certainly very effective to 
minimize the computation complexity of different subsequent operations without any 
significant loss of accuracy. The possible reason is that, we do not follow any frame skipping 
scheme as in [45] to prevent the chance of losing some valid information from skipping 
frames. 

    
         Fig. 3. Number of trajectories generated by different methods on YouTube and HMDB51 datasets   

6.3.2 Contribution Level of Static and Motion Components by Varying Ratios 
As our fusion method is based on cholesky transformation and according to the formulation 
derived in section 4, we can control the contribution level of both static and motion 
components by adjusting the value of ρ. We obtain the results for HMDB51, UCF101 and 
YouTube datasets by using for the different mathematical values of ρ. As evident from the 
evaluation from Fig. 4, there are some optimum values for the contribution ratio for which we 
obtain the highest recognition accuracy. Such as 60:40 (motion: static) for HMDB51, 80:20 
(motion: static) for UCF101 and 80:20 (motion: static) for YouTube respectively.  
Contribution ratio for HMDB51 is different than other datasets used, the possible reason is that 
most of the videos in HMBD51 dataset are with more interclass differences and complicated 
background and required more contribution of static features to classify the activities in videos. 
In our next experimental sections, we use the same contribution ratio, since we obtain the best 
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results on these contribution ratios. The obtained results proved that the cholesky 
transformation is very effective and provides the controlling contribution power of each 
domain in exact value and variance ratio. 
 
 

 
Fig. 4. Overall accuracy for varying contribution ratio between motion and static components on 

HMDB51, UCF101 and YouTube datasets. 
 
                            Table 1. Comparison of different fusion method on UCF101 dataset 

Fusion Method PCA Concatenation LWF EWS Cholesky 
T-Jumping 91.2% 90.5% 90.9% 90.0% 93.3% 
S-Juggling 92.6% 90.1% 91.4% 90.2% 94.9% 
H-Riding 88.7%          91.2% 92.1% 91.1% 93.1% 

G-Swinging 92.8% 90.9% 91.1% 89.6% 94.3% 
Diving 90.2% 89.9% 91.0% 90.9% 95.1% 
Biking 91.2% 90.3% 92.1% 91.1% 94.1% 

B-Spiking 90.0% 89.1% 91.1% 90.1% 91.8% 
Avg. Accuracy 90.9% 90.2% 91.2% 90.5% 94.3% 

 6.3.3 Comparison of Different Features Fusion Methods 

In this section, we analyse the effect of different early fusion methods. We report the per-class 
recognition rates obtained for each fusion model in Table 1. We compare our fusion approach 
(Cholesky) with different existing fusion model such as Principle of Component Analysis 
(PCA), concatenation, linear weighted fusion (LWF) and element-wise sum (EWS). We 
utilize different classes from three splits of UCF101 dataset such as T-Jumping, S-Juggling, 
H-Riding, G-swinging, Diving, Biking and B-spiking. In section 6.3.2, we achieved the 
optimum contribution ratio for UCF-101 dataset as 80:20 (motion: static), so we keep the same 
contribution ratio for this section for further verification. We observe that Cholesky 
transformation based fusion method enhances the recognition accuracy of our approach by fair 
margin as compared to other fusion methods. We obtained overall accuracy of 94.3%. As ratio 
of contribution of each static and motion information is vital for activity recognition and 
optimum contribution depends on the richness of motion information in video. Our introduced 
fusion method addresses these all issues and effectively incorporate the spatial correspondence 
between static and motion features. 
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Fig. 5.  Examples of correct predictions on UCF-101(First Row), HMDB51 (Second Row) and 

YouTube (Third Row) datasets 
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        Fig. 6.  Examples of incorrect (Failed) predictions on UCF-101, HMDB51 and YouTube datasets 



3614                                                                Sheeraz et al.: Video Representation via Fusion of Static and Motion Features 
Applied to Human Activity Recognition 

6.3.4 Recognition Visualization                  
Furthermore, for a better understanding of our proposed method, we provide additional 

recognition visualizations on video examples from three standard datasets. The proposed 
approach is tested on 40% videos of UCF-101, HMDB51 and YouTube datasets. Some of the 
intermediate frames of an action along with correct/successful visual recognition results are 
shown in Fig. 5. In this figure, first, middle and last row show the successful recognition 
examples from UCF-101, HMDB51 and YouTube dataset respectively. Recognition accuracy 
of each action frame is shown by bar graph which indicates the ground truth and bars below 
show model prediction sorted in decreasing confidence. In our model, LSTM returns output 
for each chunk and finally the video is classified for the highest frequency class in outputs. In 
Fig. 6, we also list some mis-classified/fail predictions from each of the dataset, where 
“Shooting” is classified as “Spiking” (First Column, UCF-101), “Eat” is predicted as “Chew” 
(Second Column, HMDB51) and “Tennis” is classified as “Jumping” (Last Column, 
YouTube). These incorrect predictions are due to the similarity in the scenarios, background, 
camera motion and motion of body parts of an actor performing actions, so there is possibility 
of generation of similar appearance and motion based features. It can be also observed from 
both figures that recognition scores of UCF-101 dataset are more than 90% it is because of 
UCF-101 dataset is relatively large dataset for training which is able to recognize fine-grained 
examples. Overall, our model obtained good results from all three datasets. Thus, from the 
qualitative examples, we conclude that our approach can achieve promising performance in 
practice. 

 

6.3.5 Comparison to the State-of-the-art Methods 
In this section, we further verify the effectiveness and feasibility of our model, we compare 
our proposed approach to different existing state-of-the-art human action recognition 
approaches on both UCF101 and HDMB51 datasets over three splits. The comparison results 
are reported in Table 2. We organize these baseline methods into different categories with 
respect to the type of features and network being used, including traditional, deep-learned 
features, very deep-learned features and fusion based methods (hybrid features). Compared to 
the traditional methods our model performs better by 4.9% on both datasets. Compare with 
RNN based methods such as (LSTM) [24] and (LRCN) [16], our model outperforms these two 
methods by 4.3% and 10% on both datasets respectively. Different experiments indicating that 
our approach possess higher discriminative power and our system to be on par with the 
state-of-the-art. It can be also seen that some methods with both features such as TSN [55] lead 
to a performance gain by minimal margin on the UCF101 dataset. However, our introduced 
method outperforms the 3D conv – iDT [13] by 1.7% and TSN [55] method by 0.9% on the 
HDMB51 dataset and shows higher recognition rate. We can conclude that, combination of 
LSTM with 3D convolutional network achieve better results and obtains the recognition rate 
of 94.0% and 70.7% on UCF101 and HDMB51 datasets respectively and show that there is a 
degree of complimentary among traditional, convolutional neural network and LSTM 
network. 
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 Table 2. Comparison our method with state-of-the-art existing method on UCF101 and HDMB51 
dataset 

Modality Method Year UCF101 (%) HDMB51 (%) 

   Traditional 

iDTF+fisher vector [8] 
Ordered Trajectories [6] 
MPR [46] 
MoFAP [47] 
Trajectory Rejection [45] 

2013 
2015 
2015 
2016 
2016 

84.7 
72.8 

- 
88.3 
85.7 

57.2 
47.3 
65.5 
61.7 
58.9 

       Deep 

Two-Stream [11] 
TDD [48] 
FSTCN [15] 
DANN [49] 
Dynamic Images [50] 

2013 
2015 
2015 
2016 
2016 

88.9 
90.3 
88.1 
89.2 
89.1 

59.4 
63.2 
59.1 
63.3 
65.2 

   Very deep 

C3D [14] 
LSTM [24] 
LRCN [16] 
3D Convolution [13] 
STPP-LSTM [52] 
FCNs-16 [53] 
Hidden-Two-stream [54] 
VideoLSTM [51] 

2015 
2015 
2016 
2016 
2017 
2017 
2017 
2018 

85.2 
88.6 
82.9 
91.8 
91.6 
90.5 
90.3 
89.2 

- 
- 
- 

64.6 
69.0 
63.4 
58.9 
56.4 

 
(Fusion 
Method) 
Hybrid features 
 

TDD-iDT [48] 
C3D-iDT [14] 
LTC-iDT [17] 
TSN [55] 
3D conv + iDT [13] 
FCN-16+iDT [53] 

2015 
2015 
2016 
2016 
2016 
2017 

91.5 
90.4 
92.7 
94.2 
93.5 
93.0 

65.9 
- 

67.2 
69.4 
69.2 
70.2 

Ours SMFD + iFV 
SMFD + iVLAD 

   - 
   - 

92.9 
94.0 

68.1 
70.7 

7. Conclusion 
In this paper, we propose an end-to-end approach for human activity classification which is 
based on static and motion features. Static features are learned by RGB stream of two-stream 
3D convolutional neural network and motion features are extracted by adopting traditional 
trajectory based approach. We utilize SIFT property for the detection of key points and 
computation of shape and motion descriptors. We introduce central region process to get the 
most relevant and valid trajectories to reduce the background irrelevant trajectories and 
speedup the recognition process. Moreover, we design cholesky transformation based fusion 
method to effectively fuse static and motion information. Cholosky transformation method 
provides the powerful way to control the contribution of each domain’s information in exact 
numbers, which is certainly very important for action recognition tasks. Finally, LSTM 
network is used to model the temporal progression and classification of human activity. 
Experimental results conducted on different public benchmark datasets prove the superiority 
of our model compared with other state-of-the-art methods.     
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