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Abstract 
 

The smart jammer launches jamming attacks which degrade the transmission reliability. In 
this paper, smart jamming attacks based on the communication probability over different 
channels is considered, and an anti-jamming Q learning algorithm (AQLA) is developed to 
obtain anti-jamming knowledge for the local region. To accelerate the learning process 
across multiple regions, a multi-regional intelligent anti-jamming learning algorithm 
(MIALA) which utilizes transferred knowledge from neighboring regions is proposed. The 
MIALA algorithm is evaluated through simulations, and the results show that the it is 
capable of learning the jamming rules and effectively speed up the learning rate of the whole 
communication region when the jamming rules are similar in the neighboring regions. 
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1. Introduction 

Due to the broadcast nature of wireless communication, users are vulnerable to malicious  
attacks [1]. Thus, the anti-jamming issue has been one of the most significant tasks of 
wireless networks in the past decade. Traditionally, various measures have been put forward 
for anti-jamming defense. For instance, the spread spectrum techniques are used to improve 
anti-jamming performance at the expense of spectrum resource [2]. These methods are 
regarded as spectrally inefficient [3]. Therefore, it is of great significance to seek for the 
anti-jamming scheme with high spectrum efficiency, especially with a scarce spectrum 
resource. Moreover, with the development of artificial intelligence, smart jammers can 
adaptively launch jamming attacks on users according to the reconnaissance results, which 
could severely decrease the reliability of transmission [4, 5]. It is difficult to counter this 
jamming by conventional anti-jamming methods, such as frequency-hopping communication 
schemes, whose anti-jamming strategies are fixed and independent [6]. 

To address this problem, some artificial intelligence technologies, such as reinforcement 
learning technology and deep learning technology [6, 7], have also been widely applied for 
wireless communications, due to its dynamic adaptability on anti-jamming [8]. One of the 
most commonly used method in AI fields is the reinforcement learning method, which has 
been utilized to analyze the jamming policy [9], and make anti-jamming decision [10]. So 
that users adaptively adjust actions according to the jamming policy and establish secure 
communication. Resource allocation techniques for anti-jamming, such as power control and 
channel allocation, could achieve better anti-jamming performance through efficient 
allocation of the communication resources. In terms of power control, a hierarchical learning 
approach based on reinforcement learning was formulated in [11] to solve the anti-jamming 
power game. The anti-jamming channel allocation problem is considered as a Markov 
decision process [6], which is generally solved using a reinforcement learning algorithm, 
such as Q learning algorithm [12]. In [13], a cross-layer resource allocation approach based 
on Q learning was proposed to effectively utilize unused spectrum opportunities. In [10], an 
anti-jamming Q learning algorithm was proposed to avoid sweeping jamming.  

Although the anti-jamming performance in the local region has been improved 
significantly, the transfer learning methods across neighboring regions has never been 
applied to anti-jamming learning tasks. Experience gained in one learning task can be 
transferred to help improve learning performance in a related, but different, task [14, 15]. 
Combining transfer learning methods with the anti-jamming reinforcement learning 
algorithm, the anti-jamming knowledge acquired from the local region is transferred to 
neighboring regions to accelerate the learning process and improve the multi-regional 
anti-jamming performance. 

In [16], based on knowledge sharing, a “docitive” paradigm was proposed to improve the 
learning ability and accuracy of the cognitive radio network and to determine policies for 
action selection in unvisited states. In [17], the author proposed distributed methods by 
employing reinforcement learning algorithms to address the problem of cooperative 
communication within the MAC layer. In [18], a transfer learning scheme was proposed to 
change the experience base from the recent phase by multi-agent coordination. In [19, 20], a 
transfer actor-critic method was proposed to minimize energy consumption of radio access 
networks and accelerate the ongoing learning process. 

In existing literature, applications of reinforcement learning algorithms and transfer 
learning methods in the field of wireless communications have mainly focused on impacting 
the user’s decision-making in centralized networks [21, 22]. Few of them have employed the 
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Q-Learning and Transfer-Learning concepts to speed up the learning processes of 
communication users for anti-jamming, especially in the presence of smart jammers. For 
specific jamming environment, anti-jamming technology based on Q learning can achieve 
better performance, but if the wireless environment changes, the method only based on Q 
learning has to restart learning process to obtain new anti-jamming policies. When there are 
correlations among the jamming patterns or jamming environment, the methods only based 
on Q learning may increase the additional consumption of communication resource. 
However, the anti-jamming technologies, combining Q learning with transfer learning, can 
solve this problem. In this paper, smart jamming attacks based on the communication 
probability over different channels is considered. The user utilizes Q learning techniques to 
analyze the jamming rules and determine corresponding anti-jamming strategy. Then, 
anti-jamming knowledge is transferred to the neighboring regions to speed up their learning 
processes. 

The structure of this paper is given as follow. Section 2 elaborates the system model and 
problem formulation. A multi-regional intelligent anti-jamming learning algorithm (MIALA) 
is proposed in Section 3. Then, Section 4 shows the experimental results and analyzes 
anti-jamming performance. Section 5 draws the final conclusions. 

2. System Model and Problem Formulation 

2.1 System Model 
The system model concerning the user and jammer are presented in this section. For 

convenience, Table 1 lists the used notations. 

Table 1. Summation of used notations. 

Notations Explanation 
iSJNR  The SJNR of all the channels in the ith region 

,i jC  The channel capacity of channel j 

ijj  The active time of the jth channel 

iφ  The active time of all channels in the ith region 
,i t

JPr  The jamming probability 
S  The set of possible states 
A  The set of possible actions 

( , )r s a  Immediate transmission reward 
π  Selection strategy 

,Pr ( )s s a′  The state transition probability 
( , )s aQ  Q-value 
Tl  Time label 

up  Transmitting power 

jp  Jammer power 

0n  Noise power 
λ  Channel switching cost 

chW  Channel bandwidth 

JW  Jamming signal’s bandwidth 
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iT  Jamming time for each region 
T  Jamming signal’s pulse period 

K  Iteration count 

γ  Discount factor 

0α  Initial learning rate 

τ 、 υ 、 0ξ  Boltzmann model coefficients 

ψ  Normalization constant 

δ  Time constant 
θ  Transfer coefficient 

 
As indicated in Fig. 1, the system model includes one jammer and M users which are 

located in M neighboring regions. The available spectrum consists of N non-overlapping 
channels whose bandwidths are chW . Channel capacity is adopted for anti-jamming 
performance evaluation, which is highly related to the Signal-to-Jamming-plus-Noise Ratio 
(SJNR). The SJNR of channels in the ith region is denoted by 

,1 ,2 ,[ , , ]i i i i NSJNR SJNR SJNR=SJNR  . The channel capacity of channel j is expressed as: 
 

, 2 ,log (1 )    1,2i j ch i jC W SJNR j N= + =                    (1) 
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Fig. 1. System model 
 

It is assumed that the smart jammer, limited by power, launches jamming attacks on each 
region in turn. The jammer detects the active time of all the channels in the ith region, where 
the term “active” refers to the period of time in which data is being transmitted on the current 
channel. Then, based on the detection results, the jammer launches jamming attack every T 
seconds. The jamming time for every region is iT . JW  is denoted as the bandwidth of 
jamming signal. The jamming probability is given by: 
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where ijj  is denoted as the active time of the jth channel and iφ  is expressed as the active 
time of all channels in the ith region. 

2.2 Problem Formulation 
The problem of multi-regional anti-jamming channel allocation is considered as multiple 

independent Markov decision processes [23]. Let s denote the state, or the current channel, 
and let S denote the possible states set, such that [1,2 ],N s= ∈S S . Let a denote the 
action, or the next transmission channel to be accessed, and let A denote the set of possible 
actions, such that [1,2 ],N a= ∈A A . An immediate reward for every state-action pair 
( , )s a  is expressed as ( , ) ar s a C= . The objective of the user is to obtain an optimal policy 

* Pr( | )a sπ =  which probabilistically maps state s to action a, in order to maximize the 
long-term reward [21]. The long-term reward is defined as [23]: 
 

0
0

( ) ( , ) |l
l l

l
V s E r s a s sπ γ

∞

=

 = = 
 
∑                    (3) 

 
where (0,1)γ ∈  is a factor which represents the important degree of the long-term reward 
to the current state. 0s  and la  are expressed as the initial state and the current action, 

respectively. π  is the strategy of channel selection in the state s, whereby ( )l ls aπ → . 

,Pr ( )s s a′  is denoted as the transition probability from state s to s′  by implementing 
action a. Then, the ( )V sπ  can be rewritten as:  
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                 (4) 

 
The Q-value is defined as ( , )s aQ : 

 
,( , ) ( , ) Pr ( ) ( , )s s

s S
s a R s a a s aπ πγ ′

′∈

′ ′= + ∑Q Q                (5) 
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where ( , )R s a  is expressed as the mean value of ( , )r s a . According to Bellman optimality 
theory, the optimal strategy is given as: 
 

*

*
,

*

( , ) ( , ) Pr ( )max[ ( , )]

( , ) max[ ( , )]

s s as S

a

s a R s a a s a

s a s aπ

γ ′ ′
′∈

′ ′= +

=

∑Q Q

Q Q
             (6) 

 
where the intermediate maximization of ( , )s aπQ  is expressed as * ( , )s aQ , and the 
intermediate Q-value for every next ( , )s a′ ′  is maximized [24]. For every next state s′ , the 
optimal action a′  is executed [25]. Thus, the optimal policy *π  concerning the current 
state s can be obtained and ( , )s aπQ  is maximal: 
 

{ }* arg  max ( , )s aπ

π
π = Q                        (7) 

 
Once the learning process within the region im  is completed, the anti-jamming 

knowledge can be transferred to a neighboring region 1im +  to speed up the learning rate 
within that region. 

Unfortunately, there are many difficulties to determine ,Pr ( )s s a′  and ( , )R s a . Therefore, 
this paper proposes a multi-regional intelligent anti-jamming learning algorithm to obtain 
anti-jamming strategy *π  without priori ,Pr ( )s s a′  and ( , )R s a , and share the 
anti-jamming knowledge with neighboring regions to accelerate the learning rate of the 
whole communication region. 

3. Multi-regional Intelligent Anti-jamming Learning Algorithm 

3.1 Anti-jamming Q-Learning Algorithm 
The agent using Q-learning is capable of improving the performance by keeping a 

continuous observation of the state changes and the action rewards within the operational 
environment.  

As indicated in Fig. 2, at the state s, the user chooses an action a and obtains a 
corresponding reward r from the unknown environment. Using the Temporal Difference (TD) 
method, the agent updates the Q-value according to equation (8), after each execution of an 
action.  
 

1( , ) ( , ) ( max ( , ) ( , ))t t t t ta
s a s a r s a s aa γ+ ′

′ ′= + + −Q Q Q Q             (8) 
 
where (0,1)α ∈  is used to denote the learning rate. 
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Fig. 2. Q-Learning algorithm 
 

Classical Q-Learning usually utilizes the -greedye method to achieve a trade-off between 
exploring and exploiting [26]. ε  is sensitive to the balance between exploration and 
exploitation. The learning agent can faster explore the environment with a higher ε , but it 
may result in unsatisfactory performance because of excessive exploration and insufficient 
exploitation. However, the agent with a low ε  maybe converges to the local optimum [26].  

Motivated by the Boltzmann model, the modified Q learning algorithm updates the user’s 
policy according to equation (9) to make a smooth transition from exploring to exploiting. 
For 0ξ → , the learning agent tends to select the action with the maximal Q-value, however, 
if ξ → ∞ , the learning agent’s policy is completely random [27]. 
 

( , , )/

( , , )/ ( , , )/
( | , )

s a Tl

s a Tl s a Tl

a

a s Tl
ξ

ξ ξ

τπ
τ τ

−

−

=
+∑

Q

Q Q                      (9) 

( )
0

tυξ ξ t −=                            (10) 
 
where { }| [1,2 ]iTl T∈ =Tlabel Tlabel   is “time label” which marks the time-dependent 
variables during the learning process in order to analyze the jamming period. a−  represents 
all channels except the next one to be accessed, 0ξ  impacts exploring time and ν , τ  are 
the coefficients of the Boltzmann model, which affect the transition from exploring to 
exploiting [6]. 

Motivated by classical Q-Learning theory, an anti-jamming Q learning algorithm (AQLA) 
is put forward to solve the anti-jamming channel selection problem [24]. The user chooses a 
channel a for communication according to the current strategy ( | , )a s Tlπ , then, the 
corresponding reward r is given as follows.  
 

( , , )       ,t j j t t j j j jr s a Tl C s a s al= − − ∈ ∈S A              (11) 
 
where λ  is expressed as the switching cost from current channel js  to the next channel 

ja . Then, the selection strategy is updated according to equation (9), and the Q-value is 
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updated as follows. 
 

1( , , ) (1 ) ( , , ) ( max ( , , ))t t t ta
s a Tl s a Tl r s a Tlaa  γ+ ′

′ ′= − + +Q Q Q        (12) 
 
Afterwards, the Boltzmann coefficients and learning rate are updated according to equations 
(10) and (13), respectively. 
 

0 / ( , )s aaa  µ=                          (13) 
 
where, 0α  is the initial step size, and ( , )s aµ  is denoted as the access times to ( , )s a . The 
proposed AQLA algorithm is elaborated in Algorithm 1. 
 
Algorithm 1: Anti-jamming Q-Learning Algorithm (AQLA) 
Step 1: Initialize [ , , ]s a Tl =Q 0  and ( | , ) 1a s Tlπ = S . Set 0t = . 
Step 2: Select ta  according to ( | , )a s Tlπ  and obtain tr . 
Step 3: Update Q-value and ( | , )a s Tlπ . 
Step 4: Set 1t t= +  and update the learning rate and Boltzmann coefficients. 
Step 5: Repeat the process starting from Step 2 until converge. 

3.2 Multi-regional Intelligent Anti-jamming Learning Algorithm  
Combining transfer learning methods with the AQLA algorithm, this paper proposes a 

multi-regional intelligent anti-jamming learning algorithm (MIALA) to solve the 
anti-jamming channel allocation problem across multiple regions. The MIALA algorithm, 
illustrated in Fig. 3, is described as follows. 
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Fig. 3. Multi-regional intelligent anti-jamming learning algorithm 
 

First, the wireless communication user within the region im  analyzes the jamming rules 
and determines the anti-jamming strategy using AQLA algorithm. Then, the jamming signal 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 7, July 2019              3341 

and anti-jamming knowledge iQ  learned locally within im  are transferred to the 
neighboring region 1im + . The sensing module within 1im +  compares the deviation in 
jamming signals within im  and 1im + , which is expressed as , 1i iη + . The deviation of the 
jamming signal is determined using the K-L divergence of the jamming probabilities [28]. 
The K-L divergence between ( )p x  and ( )q x  is denoted as follows:  
 

2 2
1 1

1 ( ) ( )( || ) ( ) log ( ) log
2 ( ) ( )

H H

h h

p x q xD p q p x q x
q x p x= =

 
= + 

 
∑ ∑            (14) 

 
Thus, the deviation between ( )p x  and ( )q x  is expressed as follows. 
 

,
( || )

p q
D p qη

ψ
=                           (15) 

 
where ψ  is a normalization constant. Afterwards, the user within 1im +  initializes 

1i i+ =Q Q , 1
0 , 1 0
i i

i iξ η ξ+
+= ×  and begins to learn the anti-jamming policy for 1im + . The 1i+Q  

is updated as follows: 
 

1 1
1 1

ˆ(1 )t t
i i iβ β+ +
+ += + −Q Q Q                        (16) 

t
δβ θ=                               (17) 

 
where 1

1
ˆ t

i
+
+Q  represents the Q-value learned locally within 1im + , β  is the transfer rate，  

(0,1]θ ∈  is the transfer coefficient，  and δ  is the time constant. The proposed MIALA 
algorithm is elaborated in Algorithm 2. 
 
Algorithm 2: Multi-regional Intelligent Anti-jamming Learning Algorithm (MIALA) 
Step 1: For the current region im , initialize iQ  and ( | , )i a s Tlπ . Set 0t = , 1i = . 
Step 2: Implement AQLA algorithm to obtain the anti-jamming knowledge iQ . Then, transfer iQ  

and the jamming signal in im  to neighboring region 1im + . Initialize 1i i+ =Q Q , 11
ˆ

ii++ =Q 0  and 
1

0 , 1 0
i i

i iξ η ξ+
+= × . 

Step 3: Select an action 1ib +  according to the policy 1iπ +  and obtain the reward 1i
tr
+ . 

Step 4: Update selection policy 1iπ + . 

Step 5: Combined with the previous observations and the current reward 1i
tr
+ , update the Q-value 

and the transfer coefficient. 
Step 6: Iterate through AQLA algorithm to obtain the anti-jamming policy within 1im + . Update 

1i i= + . 
Step 7: If each region has obtained the anti-jamming policy of that particular region, stop. 
Otherwise repeat algorithm starting from Step 2. 
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The current ( , )s aQ  is adjusted towards max ( , )t ta

r Q s aγ
′

′ ′+  under the control of 
learning rate α . Q learning algorithm has been proven to converge to the optimal policy, 
provided it satisfies Equation (18) [19, 24]. As 0α → , each state is visited enough times. 
Singh showed that the Boltzmann method is greedy limited by the infinite exploration, given 
a sufficiently large ξ  [29]. So the AQLA algorithm will converge to the optimal policy. 
 

2

0 0
,  

l l
α α

∞ ∞

= =

= ∞ < ∞∑ ∑                         (18) 

 
Because of the independence of neighboring regions, each user independently utilizes the 

AQLA algorithm to obtain the anti-jamming policy of that particular region, but with 
Q-value initialization based on the anti-jamming knowledge transferred [30, 31]. This 
transfer of knowledge provides a possible performance jumpstart at the beginning of the 
learning process within the neighboring region. However, the transfer rate 0β →  as 
t →∞ , so the impact of the transfer knowledge continuously decreases. Inspired by [16, 19], 
the MIALA algorithm can be shown to converge provided the learning rate α  satisfies 
Equation (18) and the transfer rate β  satisfies Equation (19). 
 

lim 0
t

β
α→∞
=                              (19) 

4. Simulation Results 

There are 5 regions , 0,1,2,3,4im i =  and 5N =  channels available for communication 
within each region. The jammer launches pulse jamming attack on each region in turn 
according to the communication probabilities of different channels. At the very start, the 
initial jamming channel is channel 5 and the initial communication channel is channel 2. The 
jamming probability of the 5 channels within the 5 regions is taken as follows:  
 

[0.05,0.6,0.05,0.3,0]
[0.05,0.55,0.05,0.3,0.05]
[0.05,0.5,0.05,0.3,0.1]
[0.05,0.45,0.05,0.3,0.15]
[0.05,0.4,0.05,0.3,0.2]

=
=
=
=
=

0

1

2

3

4

Pr
Pr
Pr
Pr
Pr

 

 
The deviation of the jamming signals between 0m  and , 1,2,3,4hm h =  is taken as 

follows: 0,1 0.4η = , 0,2 0.5η = , 0,3 0.7η = , 0,4 1η = . Other experimental parameters are 
given in Table 2. 
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Table 2. Experimental parameters 

Parameters Value 
Modulation mode QPSK 

Fading coefficients of the 5 channels [0.3,0.9,0.1,0.5,0.7]  
Transmitting power up  4dBmW   

Jammer power jp  8dBmW   
Noise power 0n  12dBmW−   

Channel switching cost λ  0.01 
Channel bandwidth chW  1MHz   

Jamming signal’s bandwidth JW   1MHz   
Jamming time for each region iT   9s   

Jamming signal’s pulse period T  3s   

Iteration count K  3000 

Discount factor γ  0.01 

Initial learning rate 0α  1 

Boltzmann model coefficients τ 、 υ 、 0ξ  1.5、  -0.02、  710  

Normalization constant ψ  3 

Time constant δ  100 
Transfer coefficient θ  0.9 

 
The state set, action set and reward function within im  are expressed as follows: 

 

2

[1,2,3,4,5]
[1,2,3,4,5]

log (1 )

i

i

i ch ir W SJNR

=
=

= +

S
A  

 
The channel quality across all 5 channels within 0m , as measured by average reward, is 

shown in Fig. 4. It shows 3 jamming periods, each of which contains 3 time slots denoted as 
Time slot 1, Time slot 2 and Time slot 3. At Time slot 1 and 2, the channel sequence 2, 5, 4, 1, 
3 is arranged in descending order of average rewards. At Time slot 3, the jammer launches 
jamming attacks. Channel 2 suffers the greatest reduction in channel quality, channels 1 and 
4 are affected to a certain extent, while channels 3 and 5 are insignificantly affected.  
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Fig. 4. Channel quality within 0m  
 

Therefore, in each jamming period, it can be seen that the optimal channel selection 
strategy is selecting channel 2 at Time slot 1 and 2 and selecting channel 5 at Time slot 3. Fig. 
5 indicates the convergence of the AQLA algorithm. As indicated in Fig. 5 (a), at Time slot 1 
and 2 in every jamming period during the whole learning process, each channel has equal 
selection probability 0.2P =  at the beginning of the algorithm. Then, the selecting 
probability for channel 2 converges to 1 after 2100 iterations and others converge to 0 as 
expected. Fig. 5 (b) indicates convergence at each Time slot 3 in every jamming period 
during the whole learning process. Along with the increasing of iteration times, the selecting 
probability for channel 5 converges to 1 after 2100 iterations as expected.  

 

Fig. 5. Convergence of channel selection probabilities within 0m  
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The AQLA algorithm is compared to the random selecting algorithm (RSA) to evaluate 

anti-jamming performance. The user utilizes RSA algorithm to randomly selects one channel 
in a slot. As shown in Fig. 6, comparing with RSA, AQLA algorithm always selects the best 
channel which has the highest SJNR. The average bit error rates of AQLA and RSA, 
measured every 150 iterations, are compared in Fig. 7, which shows that the AQLA 
algorithm surpasses the RSA algorithm in that it yields lower average bit error rates. 

 

Fig. 6. SJNR of AQLA and RSA 

 

Fig. 7. Average bit error rate of AQLA and RSA 
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The channel qualities within hm  are shown in Fig. 8. The jammer launches similar 

jamming attacks on the regions 1m , 2m , 3m , 4m ， whereby channel 2 is selected prior to 
jamming and channel 5 is selected after jamming. 

 
 

 

Fig. 8. Channel quality within regions 1m , 2m , 3m , 4m . 
 

To evaluate the anti-jamming performance, the MIALA algorithm is compared to the 
independent learning algorithm (ILA), in which the user in each region independently learns 
the optimal channel selection policy using the AQLA algorithm. The convergence of channel 
selection policies and average bit error rates of both algorithms are indicated in Fig. 9 and 
Fig. 10. 

As shown in Fig. 9, the proposed MIALA algorithm converges to the optimal channel 
selection policy in fewer iterations than ILA algorithm. In Fig. 10, it is shown that the 
MIALA algorithm surpasses the ILA algorithm in that it yields lower average bit error rates. 
Because of the similarity of jamming rules within 1m , 2m , 3m , 4m  and those within 

0m , the anti-jamming channel selection policy learned within , 1,2,3,4hm h =  is expedited 

by the transfer of knowledge from 0m . Furthermore, it can be seen from Fig. 9 and Fig. 10 
that the impact of transferred knowledge is related to the deviation in jamming rules η , the 
smaller the deviation, the greater the performance improvement. 
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Fig. 9. Convergence of channel selection probabilities within 1m , 2m , 3m , 4m . (I denotes the ILA 
algorithm and M denotes the MIALA algorithm) 

  

 Fig. 10. Average bit error rates of ILA and MIALA within 1m , 2m , 3m , 4m . 
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5. Conclusion 
Based on Transfer-Learning and modified Q-Learning, this paper proposes a multi-regional 
intelligent anti-jamming learning algorithm (MIALA) to solve the problem of anti-jamming 
channel selection across multiple regions. The simulation results have proven that, based on 
the local environment and transferred knowledge, the MIALA algorithm is capable of 
learning the jamming rules of the smart jammers and effectively speed up the learning rate of 
the whole communication region when the jamming rules are similar in the neighboring 
regions. 
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