
韓國數學敎育學會誌 시리즈 A <數學敎育> J. Korean Soc. Math. Ed. Ser. A:
http://dx.doi.org/10.7468/mathedu.2019.58.3.367 The Mathematical Education
2019. 08. 제 58권, 제 3호, 367-381. August. 2019, Vol. 58, No. 3, 367-381.

367

An analysis of U.S. pre-service teachers’ modeling

and explaining 0.14

Lee, Ji-Eun (Oakland University, USA, lee2345@oakland.edu)

Lim, Woong (Yonsei University, woonglim@yonsei.ac.kr)
Corresponding Author

넓이 0.14에 대한 미국 예비교사들의 모델링과 설명 분석
1)

이지은 (오클랜드대학교, 교수)․임웅 (연세대학교, 교수)
교신저자

초록
본 연구는 국외 수학 교사교육 사례 보고의 일환으로, 미국의 예비교사들이 넓이 0.14m2 를 모델링하고 설명하는 과
정을 분석하고 논의하였다. 수학방법론을 수강한 총 94명의 예비교사들이 자신이 이해하는 바를 문장으로 서술하기,

교구나 그림 등을 통해 모델을 제시하기, 학생들의 수준을 고려하여 구두로 설명하기 등으로 이루어진 일련의 활동에

참여하였으며, 이 자료들이 분석에 이용되었다. 분석 결과, 개념들 간의 연계성, 양적 및 질적 추론, 적절한 용어의 사

용, 개념적 이해 등에 있어 성공 및 오류 사례 간에 큰 차이가 있었다. 본 연구는 수학교사교육자들이 예비교사들에게

수학지식과 교수방법이 유기적으로 통합된 과제를 교사교육 초기부터, 그리고 지속적으로 제공할 것을 제안한다.

Abstract
This investigation engaged elementary and middle school pre-service teachers in a task of modeling and

explaining the magnitude of 0.14 and examined their responses. The study analyzed both successful and

unsuccessful responses in order to reflect on the patterns of misconceptions relative to pre-service teachers’ prior

knowledge. The findings suggest a need to promote opportunities for pre-service teachers to make connections

between different domains through meaningful tasks, to reason abstractly and quantitatively, to use proper

language, and to refine conceptual understanding. While mathematics teacher educators (MTEs) could use such

mathematical tasks to identify the mathematical content needs of pre-service teachers, MTEs generally use

instructional time to connect content and pedagogy. More importantly, an early and consistent exposure to a

combined experience of mathematics and pedagogy that connects and deepens key concepts in the program’s

curriculum is critical in defining the important content knowledge for K-8 mathematics teachers.
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Ⅰ. Introduction

This study examines how a group of U.S.

elementary and middle school pre-service teachers

(PSTs) engage in a mathematical task in which they

explain an area of measure through various

representations. Researchers in the U.S. (e.g., Battista,

1982, 2003, 2004) have looked into the pedagogy and

student misconceptions related to measurement,

especially area and volume measurement. Some

researchers in Korea have also reported on student

conceptions about area and volume measurement and

proposed new teaching methods (Kim & Kang, 2011;

Lim & Park, 2011; Na, 2012; Park & Paik, 2010).

However, few studies have investigated the

understanding of prospective teachers in

university-based teacher education programs about the

topic as the baseline data to inform teacher education

at the elementary or middle school level. Nor has

research discussed how PSTs, through a curriculum of

mathematics teacher education, could improve content

and pedagogy together with the aim of supporting the

beginning educators in revising or re-organizing their

content knowledge and developing their teaching skills.

In light of the need to support pre-service teachers

in reviewing important school mathematics topics, it is

significant to engage pre-service teachers in

meaningful mathematical tasks as part of their

mathematics education courses. These tasks have the

potential to connect content and pedagogy, while

affording pre-service teachers the opportunity to reflect

on how their future students can make connections

between and among mathematical ideas in a task. In

this study, we used a mathematical task of

measurement, analyzed how the task helps to identify

types of content needs for pre-service teachers, and

discussed the way such a task could serve as a useful

context for connecting content and pedagogy for future

K-8 mathematics teachers.

The rationale for selecting measurement as a

mathematical focus is as follows: though measurement

is one of the core components of the elementary school

mathematics curriculum, many students do not have

thorough knowledge of relevant measurement concepts

(Outhred., Mitchelmore, McPhail, & Gould, 2003). In

particular, studies have reported that students have an

inadequate understanding of area measurement, which

involves the coordination of two dimensions. Studies

have also shown that students struggle to transition

from linear measurement to area measurement

(Fernández, De Bock., Verschaffel, & van Dooren,

2014). The domain of measurement is an important

foundation because “[it] offers an opportunity for

learning and applying other mathematics, including

number operations, geometric ideas, statistical concepts,

and notions of functions” (National Council of Teachers

of Mathematics [NCTM], 2000, p. 44). According to the

suggested progression through grade levels, middle

school teachers should be prepared to support students

as they learn to make logical connections between

different dimensions of measurement, and build upon

what they have previously learned in earlier grades

(Common Core State Standards Initiative [CCSSI],

2010).

As our study examines the variation of PSTs’

responses to the mathematical task of area

measurement, data analysis is guided by the following

research questions: (1) What are the features noted in

the successful cases of modeling and explaining the

given magnitude? (2) What are the PSTs’ struggles as

they construct and explain the given magnitude, as

noted in the unsuccessful cases?

Ⅱ. Theoretical Background

1. Place of measurement in school mathematics

Measurement has been recognized as an important

foundational domain in both school mathematics and
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workplace practices (CCSSI, 2010; Kent, Bakker,

Hoyles, & Noss, 2011; NCTM, 2000). Yet, despite this

importance and usefulness, many studies have

addressed the unsatisfactory results of students’

learning of measurement in school (Clements & Bright,

2003; Sisman & Aksu, 2016; Zacharos, 2006). Out of

the many factors causing students’ difficulties in

learning mathematics, this study pays particular

attention to the emphasis on measurement concepts and

their place in school mathematics.

Measurement deals with the coordination of

continuous quantity and number (Smith, van den

Heuvel-Panhuizen, & Teppo, 2011). As mentioned

earlier, students are introduced to measurement during

their early elementary years and are expected to make

logical connections between different dimensions of

measurement (CCSSI, 2010). Although this surface level

progression seems reasonable, researchers urge us to

take a closer look at the design and emphasis placed

on the measurement concepts. Smith et al.(2011) point

out that poor student conception is caused by, “less

classroom attention to the measurement of continuous

quantities than to developing students’ understanding of

base-10 number and arithmetic operations” (p. 618).

This is reflected in relatively less instructional time, as

well as less depth of exploration. Also, in many cases,

the design of curriculum places and addresses spatial

measurement (i.e., length, area, volume) in an isolated

sequence rather than integrating different dimensions

around central conceptual foundations (Smith et al.,

2008 as cited in Barrett et al., 2011). As such, some

researchers propose alternative approaches to promoting

the integration of different mathematical domains. In a

Russian experimental curriculum (Davydov, Gorbov,

Mikulina, & Savel’eva, 1999), first grade students

discuss various properties of quantities (e.g., length,

volume, and weight) and understand a number as the

expression of a relationship between a quantity to be

measured and a measuring unit. The notion of the

mathematical structure between quantity and unit is

easily applicable across different dimensions of

measurement without massive interventions (see Lee,

2006 for additional explanations). Similarly, Barrett et

al.(2011) found that thoughtful design of spatial

measurement activities across varying dimensions and

tasks in the early grades could contribute to building a

strong basis for other mathematics topics like

proportional reasoning and rational number knowledge,

since measurement units are closely related to these

topics.

2. Students’ misconceptions and errors in area

measurement

The construction of unit and scale serve as the

conceptual foundations of measurement (Davydov, 1990;

Lehrer, Jaslow, & Curtis, 2003). Although these central

concepts apply for all spatial measurements (i.e., length,

area, volume), complexity increases as the

dimensionality increases. For instance, when

considering area measures, students will face additional

challenges in thinking about central conceptions for

measurement in two dimensions. As the task presented

in this paper specifically utilizes the context of area

measurement, this section briefly summarizes the many

difficulties related to students’ understanding of area

measurement.

Area measurement relies on the idea of constructing

an array of unit squares (Lehrer et al., 2003).

Researchers report that students’ often have difficulty

understanding the unit structure associated with array

and grid structure (Battista, Clements, Arnoff, Battista,

& van Auken Borrow, 1998; Curry & Outhred, 2005).

Students will use units of length measure for area,

which often results in confusion between perimeter and

area (Battista, 2003; Lehrer, 2003). Further, they

attempt to use additive relationships rather than

multiplicative relationships correctly for area

measurement (Empson, Junk, Dominguez, & Turner,
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2006). This is an indication of student confusion with

dimensionality (i.e., one-dimensional length vs.

two-dimensional area); because student difficulties are

rooted in these weak conceptual understandings, it is

common for many young students to apply area

formulae without understanding what the products of

length and width really mean (Battista et al., 1998;

Lehrer et al., 2003).

3. Adults’ understanding of area measurement

While there are some research studies on adults’

understanding of measurement, including pre-service

teachers and other college students, studies on these

populations are relatively scarce compared to studies on

grade school students. Baturo and Nason(1996, p. 261)

reviewed elementary pre-service teachers’ knowledge of

area measurement and reported, “much of [the

participants’] substantive knowledge was incorrect,

and/or incomplete, and often unconnected” and the

participants perceived area measurement, “as a set of

units and formulae which was to be rote learnt and

then applied.” Menon(1998) suggests that teachers’

shallow content knowledge and instructional practices

are the causes for students’ struggles in measurement

concepts. In an examination of Malaysian pre-service

teachers’ knowledge of area formulae using clinical

interviews, Yew, Zamri, and Lian(2010) reported a lack

of conceptual knowledge related to the formula for the

area of a rectangle, showing a strong indication of

reliance on rote-learned formulae. Simon and

Blume(1994) also suggest that many elementary

pre-service teachers do not clearly understand that the

relationship of the length and width of a rectangle to

its area can be modeled by multiplication of length by

width. Dorko and Speer(2015) investigated college

students’ understanding of area and volume units and

reported that students who struggled with units seem

to possess weak knowledge of array or dimensionality,

while successful students tended to consider arrays

and/or dimensionality. Overall, these studies indicate

that the weak conceptual understanding of area

measurement among adults (including teachers and

pre-service teachers) has somewhat similar patterns to

those reported in studies for grade school students.

4. Situating the study

The preceding three themes in this literature review

suggest the recognition of several key points: the

importance of measurement in school mathematics,

concerns about students’ persistent misconceptions and

errors in area measurement, limited research on

pre-service teachers’ understanding, and the

implications on future teaching practice. Despite the

limited research on pre-service teacher knowledge of

measurement in teacher education, Baturo and

Nason(1996) were quite instrumental in that their study

used eight tasks to examine teacher knowledge of area

measurement and provided detailed work on PSTs’

mathematical concept and process. Extending the work

of Baturo and Nason(1996) and considering the gap in

literature about pre-service teacher concepts and

strategies regarding area measurement, this study

seeks to investigate the knowledge of elementary and

middle school PSTs. This investigation will focus on

how PSTs reason and model in an attempt to explain

the size of 0.14 . It is expected that PSTs’

approaches to the given task offer fertile ground for

identifying pedagogical issues and opportunities related

to young students’ thinking. These approaches will also

provide valuable insights for the kind of content

knowledge that connects with classroom practice.

Ⅲ. Methods

1. Participants and context

Data from pre-service elementary and middle school

teachers was gathered over three semesters (n=94)

across five sections of an elementary and middle
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school level mathematics methods course. The methods

course was required for all participants in a teacher

preparation program at a Midwestern university in the

United States, one of the authors was the instructor of

the course. All PSTs were working towards their

initial teaching certifications for Kindergarten through

eighth grade. As part of their major requirements, the

PSTs took two mathematics content courses prior to

this methods course; the studied course surveyed

number theory, statistics, and geometry. The learning

objectives of linear and area measurements in the

mathematics content courses include understanding of

measurable attributes of objects and the units, and

systems as well as application of techniques, tools, and

formulas to determine measurements.

The methods course was structured around several

major concepts relevant to elementary and middle

school mathematics, including the place value system,

whole numbers and operations, fractional numbers and

operations (as the primary foci), measurement,

geometry, data analysis, and statistics (as the

secondary foci). To provide contextual background, a

description is provided below illustrating the aspects of

measurement highlighted in the course.

For the purposes of the course, measurement is

defined as the relationship between the measuring unit

and the quantity to be measured, where the unit and

quantity are the same kind of magnitudes (e.g., length,

area, volume, etc.). The need for specification of the

unit is also highlighted. For example, the following

drawing (Figure 1) is shown along with a question:

“How many are here?” (adapted from Davydov, 1990,

p. 67–68).

[Fig. 1] Six chopsticks

A common initial reaction was 6. However, this

answer is not sufficient when we do not know “how

many of what.” When the one line segment represents

a pencil and the question was “how many pencils are

here?” or one line segment represents a chopstick and

the question was “how many pairs of chopsticks are

here?” two different answers are possible depending on

the unit of measure (see Figure 2).

[Fig. 2] Two methods of counting, using a different unit of

measurement

Likewise, when discussing different measuring unit

conversions for different dimensions (e.g., length, area,

volume, etc.), emphasis was placed on constructing the

actual sizes of linear units (e.g., , , ),

two-dimensional units (e.g.,  ,  , ),

three-dimensional units (e.g.,  ,  , ), and on

examining the relationship between magnitudes of units

(e.g., How many  are in a ?).

2. Task

The participants were asked to show the actual size

of 0.14and explain it in a way that a middle school

student would likely be able to understand. This

specific task was chosen to examine three issues

relevant to understanding the meaning of measurement:

(1) choosing an appropriate unit for measuring an

attribute, (2) exploring the relationship between the size

of a unit and the number of units required to measure,

and (3) dealing with measurements that have whole

units and parts of a unit (Grant & Kline, 2003). The
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magnitude 0.14 was chosen because the number 14

yields multiple factors of the area. The task also

demanded drawing areas of the correct size to

challenge participants to think with real-world referents

before moving to abstract spaces of algebraic

manipulation.

To maintain the unfamiliarity of the task (so that

participants could activate their concept of area

measurement rather than memorized strategies),

teaching strategies for decimal fractions or measures

with decimal fractions were not specifically discussed

when the task of modeling and explaining the size of

0.14 was presented. PSTs were only exposed to

whole number operations, common fractions,

construction of the actual size of various measurement

units (e.g., building actual size of a square meter or a

cubic meter), and their conversions (e.g., How many

centimeters are there in 1 meter? How many square

centimeters are there in one square meter?).

Participants were asked to work with their peers

during the class time. A total of 94 PSTs jointly

engaged in the task by forming pairs or groups of

three (41 pairs and four groups of three PSTs).

Although it was not a timed-task, it took between 20

- 40 minutes for most pairs/groups to complete the

work of discussing and preparing their presentation of

explanations. Each pair or group of PSTs summarized

their ideas in three ways after reaching a consensus

through discussion: (1) written statements describing

their own understanding, (2) physical modeling using

available materials, and (3) 5-minute verbal

explanations presentable to middle school students.

PSTs were informed that materials for modeling were

available (e.g., ruler, base 10 block sets, square meter

overlay) without specifying what needed to be used

(see Figure 3).

[Fig. 3] Materials available for physical modeling

3. Data collection and analysis

The PSTs’ written statements were collected, with

observation notes taken by the researcher and a

research assistant to document PSTs’ use of physical

materials and verbal explanations. An analysis of

PSTs’ written statements and observation notes was

conducted via two levels: the first level of analysis

provided descriptive information on frequencies of

correctness of the size of 0.14 and types of chosen

representations, while the second level of analysis

followed some aspects of the open-ended coding and a

double-coding procedure (Miles & Huberman, 1994;

Strauss & Corbin, 1998) to examine the strategies

PSTs used, as well as their reasoning process. Initially,

the researcher independently reviewed the written data

with a research assistant to identify recurring themes

in strategies used for reasoning in both successful and

unsuccessful cases of modeling and explanations. Later,

the investigator and research assistant jointly revised

and refined the independently identified themes through

comparison and discussion, after which they jointly

coded so that coding discrepancies could be resolved

immediately.

Ⅳ. Results and Discussion

1. Correctness of presenting and reasoning the
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Connections to other
mathematics topics Description

Frequency
(n = 56)

Fractional numbers
(see Example 1)

Explanations address the referent unit and the relationship between the
referent unit and the proposed magnitude (Lee, Brown, & Orrill, 2011). 26

Base-10 Place value
system

(see Example 2)

Explanations address one or more of the following properties that characterize
the base-10 place value system (Ross, 2002):
1. Additive property. The quantity represented by the whole numeral is the
sum of the values represented by the individual digits.

2. Positional property. The quantities represented by the individual digits are
determined by the positions that they hold in the whole numeral.

3. Base-ten property. The values of the positions increase in powers of ten
from right to left.

4. Multiplicative property. The value of an individual digit is found by
multiplying the face value of the digit by the value assigned to its position.

18

Area formula
(Multiplication)
(see Example 3)

Explanations highlight that area is an attribute of two-dimensional regions and
provide two factors for length and width that can produce the given area
measure.

10

Unit conversions as
known facts
(see Example 4)

Explanations are based on the rules associated with conversion units of area
by moving the decimal point left or right or treating the conversions as
known facts.

2

[Table 2] Reasoning/strategies used: successful cases

magnitude of 0.14

Presentation of
Magnitude Validity of Reasoning

Frequency
(n=94)

Correct Valid 56
Unable to provide
reasoning 2

Incorrect Valid-Invalid 6
Invalid 20
Unable to provide
reasoning 2

Unable to
present

Invalid 6
Unable to provide
reasoning 2

 These are the cases that proposed mixed reasoning.

[Table 1] PSTs’ performance of presenting and reasoning

the magnitude of 0.14

Table 1 shows the overall snapshot of PSTs’

performance in terms of correctness of the asked

magnitude (0.14) and reasoning behind their

answers.

There was apparent alignment between the validity

of reasoning and the correctness of magnitude for most

cases (i.e., valid reasoning resulted in correct

magnitude and invalid reasoning led to incorrect

magnitude). However, several cases did not

demonstrate this alignment. Six PSTs provided mixed

reasoning. In all of these cases, PSTs were initially

able to provide their reasoning abstractly (e.g., using

conversion between units) but could not present a

correct magnitude in other forms when asked to show

the amount quantitatively. Also, there were three PST

pairs/groups who could not provide any clear verbal or

written explanations. These PSTs’ presentations of

magnitude were varied (i.e., correct, incorrect, and no

presentations). There were no cases in which invalid

reasoning led to the correct magnitude. More specific

examples will be presented in the following sections

when discussing the successful and unsuccessful cases.

2. Features noted in successful cases of modeling

and explaining

Here, successful cases refer to examples that

presented correct magnitude with valid reasoning. A

total of five strategies were identified. Having a

decimal form of measure, the two most popular
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interpretations were based on PSTs’ understanding of

the base-10 place value system and decimal fractions,

though there was some overlap in PSTs’ explanations

because decimal fractions have a base-10 positional

system. The distinction was made based on the

presence of key features underlying place value and

fractions. Table 2 shows the descriptions of utilized

strategies and their usage frequencies. This is followed

by specific examples of PSTs’ work.

Representations Used for Modeling

Explanation

Example 1(a)

We need to focus on the whole first. What is the

whole? The whole is 1 square meter [picked up the
entire 1 square meter overlay]. 0.14 is the same
as 14/100 . This means that the whole is cut into

100 equal-sized pieces and we are discussing 14 of

them. Because 1/100 of a square meter is this

[pointed out one of the blue sections], we need 14

of those for 0.14 [pointed out all blue sections].

Example 1(b)

[Before starting explanation, wrote ‘0.14’ on the
board.] How do we read this decimal correctly? Is
it “zero point one four”? Can we read this more

precisely and in a mathematically correct way? We

read this as “zero and fourteen-hundredths.” So,

what we are looking for is fourteen-hundredths of

this [picked up the entire 1 square meter
overlay]. One hundredth of this is that [pointed out
one of the blue sections]. So, we need 14 of those
[pointed out all blue sections].

[Fig. 4] Successful case connecting with the meaning of

fractional numbers

Example 1. These PSTs expanded their

understanding of fractional numbers (common fractions

or decimal fractions) to interpret this two-dimensional

quantity (see Figure 4). They defined the referent unit

(the whole) first and explained how a part can be

named based on the size of the whole.

Representations Used for Modeling

Explanation

0.14 has three places: ones place, tenths place,

and hundredths place. In this case, the size for ones

place unit is this [picked up the entire 1 square
meter overlay]. It is one square meter. The size of
tenths place unit should be 10 times smaller than

one square meter. So, the one long strip of the

whole square meter is one-tenth of a square meter

[pointed out the red colored column]. The size of
hundredths place unit should be 10 times smaller

than the previous place unit, which is one-tenth of

a square meter. So, this one square [pointed out
one of the blue colored sections] is one-hundredth

of a square meter. In 0.14 , there is nothing in

the ones place, 1 in the tenths place, and 4 in the

hundredths place. This means that we need one full

column [pointed out the red section] and four of
these [pointed out all blue sections].”

[Fig. 5] Successful case connecting with the place value

system

Example 2. The PSTs who presented this case

focused on the place value concept. They tried to

model and explain by highlighting the size of the unit

in each place. These PSTs considered the given

quantity as 0.14=0·+(1×0.1)+(4×0.01). This

explanation relies on an understanding of the place



An Analysis of U.S. Pre-service Teachers’ Modeling and Explaining 0.14  375

Representations Used for Modeling

Explanation

1 square meter is the area created by 1 meter

length by 1 meter width. 10 centimeters is the

same as 1 decimeter, and 10 decimeters is the same

as 1 meter. So, 1 square meter is the same as 10

decimeters by 10 decimeters, which is 100 square

decimeters. It is also the same as 100 centimeters

by 100 centimeters that is 10,000 square

centimeters. 0.1 [read as zero point one] square
meter is 10 square decimeters [showed how the
decimal point moved] and also 0.01 [read as zero
point zero one] square meter is 1 square decimeter
[showed how the decimal point moved]. So, 0.14
[read as zero point one four] square meters is 14
like this [picked up a flat piece from the base 10
block set] because it is a square decimeter, which
is one decimeter by one decimeter.”

[Fig. 7] Successful case with symbolic representations

value system and its application in base-10. Figure 5

illustrates what materials they used to model the

magnitude and how they explained the given quantity

using those materials.

Representations Used for Modeling

Explanation

Example 3 (a)

Area is length times width [wrote A=L×W]. The

area is 0.14 . One possible case is 0.2 meter by

0.7 meter. [When asked to show the actual

magnitude, a meter stick was used to show the

length and width, stating that 0.2 is the same as

20 and 0.7 is the same as 70.]

Representations Used for Modeling

Explanation

Example 3 (b)

0.14 is 1 by 0.14. So, the area of a rectangle that is

1 meter long and 0.14 meters wide is 0.14 square

meters. [When asked to show the actual magnitude,

the square meter overlay was used to show the

length and width. Pointing out the red colored

section.]

[Fig. 6] Successful case with applying area formula

Example 3. Some PSTs suggested finding the

length and width of a rectangle with 0.14 as the

area. Two different sets of factors were specifically

presented (see Figure 6). Although these PSTs

abstractly found the length and width, they were

successful in presenting the actual size of the given

area measure with valid explanations.

Example 4. As shown in Figure 7, some PSTs

explained the size of a given quantity by first using

completely computational and symbolic representations,

then finding the actual magnitude of the given

measure. They noted the conversions between

two-dimensional units abstractly (e.g., moving around

the decimal point).

3. Features noted in unsuccessful cases of modeling

and explaining

Here, unsuccessful cases refer to all of the cases

that could not present both correct magnitude and valid

reasoning. A total of 38 PSTs proposed invalid
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Attempts to connect mathematics

topics
Description

Frequency

(n = 38)
Area formula (Multiplication)

(see Example 5)
Explanations highlight that area is an attribute of

two-dimensional regions and attempt to find two equal factors

for length and width that can produce the given area measure

(i.e., length = width).

14

Confusion with dimensionality

(see Example 6)

Explanations were based on the relationships between first

dimensional units (length) rather than second dimensional units

(area).
7

Additive relationship vs.

Multiplicative relationship

(see Example 7)

Explanations show confusion between additive relationship and

multiplicative relationship. 5

Confusion with place value whole

numbers and decimals

(see Example 8)

Explanations include incorrect application of place value concept.

6

None Unable to provide both reasoning and the actual size (4)

Able to present the actual size, but unable to provide reasoning

(2).
6

These categories include six PSTs who proposed mixed reasoning. PSTs initially proposed valid reasoning at the
abstract level, but used invalid reasoning when asked to show the actual size of the given area.

[Table 3] Reasoning/strategies used: unsuccessful cases

reasoning or were unable to provide reasoning at all.

Six PSTs initially provided valid reasoning at the

abstract level (manipulation of symbols only), but they

changed it to invalid explanations when asked to show

the actual size of the given area. Six PSTs were

unable to provide proper reasoning at all. Among them,

two PSTs showed the correct size of the asked area,

but failed to explain why it showed 0.14 .

Similar strategies used for the successful cases were

used but incorrect or incomplete answers and/or

reasoning were presented. Table 3 shows the

descriptions of strategies utilized and the frequencies of

usage, which was then followed by specific examples

of PSTs’ work. Since most of PSTs in these

categories provided incomplete explanations, or altered

their own due to confusion, the examples below (see

Figure 8) highlight attempts rather than full

explanations.

Ⅴ. Conclusion and Implication

1. Conclusion

The study investigated PSTs’ approaches to

modeling and explaining an area measurement

represented in decimal notation. The literature on

pre-service teacher knowledge of area measurement

tends to draw an alarming picture of low and

disconnected mathematical knowledge. Our findings

offer a more concrete diagnosis of their knowledge.

Our findings suggest that PSTs engaged in flexible

strategies to represent an area, while tapping into their

prior knowledge about the area. Our findings, just like

other researchers (e.g., Baturo & Nason, 1996; Dorko &

Speer, 2015; Yew et al., 2010), also reveal that PSTs’

struggled to connect and apply prior knowledge in an

unfamiliar context.

Considering the various cases of successful and

unsuccessful modeling and the explanations presented

here, it is clear that modeling and explaining the

magnitude of 0.14 does involve knowledge that goes

beyond recalling and applying a formula. We believe
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Example 5 Example 6

In this example, PSTs

interpreted 0.14 as the area

of a square whose length and

width are both 0.14. When

asked to show how 0.14×0.14

 can be 0.14 , they used a calculator and found

that the answer is 0.0196 . With this confusion,

their explanation ended without conclusion.

In this example, PSTs selected

one long and four unit base

10 blocks. In their explanation,

they only referred to the linear measuring units, stating

“this piece [the long piece] is one decimeter and one

decimeter is one-tenth of a meter. So, we need one of

those. Also, this piece [the unit piece] is one centimeter. It

is one hundredth of a meter. So, we need four of them.”

When asked which part of the materials were used to

show 0.14 , they traced one face of each pieces to show

that they were talking about the area.

Example 7 Example 8

In this example, PSTs

immediately noted that 0.14

 is the same as 14 .

When asked how big 14

is, they drew a 7 by 7

square, concluding that 7

×7=14=0.14 . When asked to explain why 7

×7=14 , they noticed their mistake, but

could not come up with physical or pictorial

representation for 0.14 .

This pair of PSTs

immediately chose the

above base 10 blocks [one

flat piece and four long

pieces]. When asked for

explanation, they said, “This flat piece is one hundred. The

one long piece is a tenth of the flat. So, we need one flat

and four longs.” This pair did not refer to the name of

measuring units at all.

[Fig. 8] Examples of unsuccessful cases

this is an important criterion for defining a rich and

meaningful mathematical task in mathematics education

course work. Our task requires the knowledge of what

it means to measure, the ability to differentiate various

dimensions of magnitudes (e.g., length vs. area), the

ability to broaden the prior understanding of the

domain of numbers, and the ability to flexibly use

physical or pictorial models to support reasoning. The

successful cases from the PSTs’ work demonstrated

these abilities. Based on the findings regarding the

strategies PSTs used and the conceptions they held,

this section presents several implications teacher

educators can consider when designing and creating

meaningful mathematical learning experiences for PSTs

in mathematics education courses.

First, while it is critical for PSTs to engage in

meaningful mathematical tasks, it is equally important

to dwell on exactly what we mean by meaningful and

rich tasks as part of our curriculum in mathematics

education. Our findings indicate that an important

criterion of meaningful mathematics tasks for PSTs is

whether the task can promote connections between

different mathematics domains. As mentioned earlier,

one of the criticisms for grade school curriculum is

teaching mathematical concepts in an isolated,

unintegrated way. This might be true in PSTs’ past

learning experiences as well. Considering that PSTs

are in the transitional period from students to teachers,

it is important to review content through a math task

that connects various concepts, and more importantly

one that uses the opportunity to connect content to the

pedagogy of engaging students in similar tasks. In this

study, most successful cases show the efforts of

extending and elaborating on the concept of area based
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on a number of related concepts (e.g., numbers and

operations in base 10, place value understanding,

rational numbers)—while some unsuccessful cases

indicate difficulties in extending and elaborating on the

concept of area beyond the area formula.

Second, meaningful math tasks for PSTs should

provide the opportunity to develop reasoning skills both

abstractly and quantitatively. This kind of reasoning is

one of the Standards for Mathematical Practice that we

expect PSTs to foster in students at all levels (CCSSI,

2010). Related to our task in this study, an important

reasoning skill is “considering the units involved,

attending to the meaning of quantities, not just how to

compute them, and knowing and flexibly using

different properties of operations and objects” (CCSSI,

2010, p. 6). It was interesting that some PSTs clearly

demonstrated mathematical precision in specifying units

of measure as they used the actual manipulatives

available to visualize the magnitude of units (e.g.,

actual size of a square meter overlay). This was

interesting because in several unsuccessful cases, PSTs

could manipulate algebraic symbols abstractly and

demonstrated elaborate conversions, but failed to

present the actual size of the asked area measurement.

This implies that the procedural skills involved in

applying rules or formulae do not necessarily represent

students’ understanding of the meaning of said

quantities.

Third, a rich math task in a mathematics education

course provides PSTs the opportunity to reflect on

appropriate and effective language use as the

classroom teacher. It is difficult to imagine our PSTs

dwelling on language issues in the mathematics

classroom when they take mathematics content courses,

in most part because those courses may not be

designed for future teachers. Regarding the use of

appropriate language of measurement with precision,

the PSTs who presented unsuccessful reasoning or

magnitude of 0.14 used vague terms when referring

to measuring units (e.g., saying “14 like this” rather

than “14 square decimeters” or saying “One hundredth

of this is that). Although it is hard to generalize with
the limited work samples provided in this paper, PSTs’

ability to “reason both abstractly and quantitatively”

and “attend to precision,” both of which are standards

for mathematical practice (CCSSI, 2010), seem to go

hand in hand. For example, PSTs referred to 0.14 in

a variety of ways such as “point one-four meters,

squared," "point one-four meters-squared" or "point

one-four square meters," and some PSTs stated, “0.14

=0.14×0.14.” This finding adds more credence to

the view that our PSTs need precision. PSTs need

precision not only in their mathematical work, but also

in using appropriate language to communicate their

mathematical thinking and reasoning.

Fourth, we suspect that children and adults are not

so different in their misconceptions regarding some

mathematical concepts. The misconceptions about the

measurement of area do not necessarily disappear with

time and maturity when students experience little about

using the concept of area in later courses. In fact, the

logic and patterns of errors shown in the PSTs’

unsuccessful cases resemble students’ misconceptions

as reported in other studies. From difficulties with

numerical procedures caused by insufficient

understanding to misapplication of linear relationship in

non-linear situations (Fernández, Llinares, van Dooren,

De Bock, & Verschaffel, 2012), there is still a great

need to improve PSTs’ conceptual understanding of

measurement and their ability to make connections to

multiple domains of mathematics in order to build a

strong conceptual foundation. In the same vein, there is

a need to highlight meaningful use of various

representations. Some cases in this study show PSTs

employing inflexible or rote ways of using

manipulatives. For example, PSTs who employed the

approach in Example 8 somewhat demonstrated their

understanding of the base-10 system as evidenced in
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their interpretation of a long piece as one-tenth of the

flat piece. However, they seemed to believe that the

flat piece in the base-10 block sets always represents

100, as it was frequently used in whole number

representations.

Perhaps, past learning experiences for these PSTs

focused greatly on the technical aspects of dealing with

the domain of measurement. However, despite their

past learning experiences, teachers are expected to

provide appropriate support to allow students the

opportunity to articulate mathematical ideas and

connect related concepts. To do so, PSTs should be

afforded the opportunities to deepen their understanding

of measurement concepts and practice modeling along

with logical and coherent explanations in teacher

preparation programs.

2. Implications

The field of mathematics teacher education has

developed an increasingly diverse body of teacher

knowledge and skills in the mathematics classroom. In

addition to learning to write lesson plans, most

mathematics education courses (including the

mathematics methods course in the university-based

teacher education programs) integrate content and

pedagogy, even addressing affective issues in the

mathematics classroom. Although our findings from

this study largely point to the lack of PST skills in

integrating key concepts to make sense of unfamiliar

concepts and contexts, we do not mean to dwell on the

deficit. Rather, the implication of these findings

indicates the need for learning opportunities designed

for mathematics teachers in math content courses—

where the focus is more on integrating important

concepts in school mathematics, as opposed to the

mastery of advanced mathematics—especially for K-8

mathematics teachers.

Pre-service teachers take mathematics courses

mostly from the mathematics department, and

instructors may teach content knowledge using the

same methods they would employ for

science/engineering majors. In the midst of

mathematics education reform, pre-service teachers

ought to learn mathematics in the manner in which

they will be teaching it, which is unlike the lecture

format found in traditional classrooms. Mathematics

courses need to have a renewed focus on providing

powerful learning experiences for pre-service teachers.

Regarding the nature of powerful learning experiences,

the implication of our findings points to the rich task

and contexts in which pre-service teachers apply key

math concepts and use appropriate and precise

language to model and explain their thinking and

reasoning. Our field has come to recognize that

teachers who perform highly in advanced mathematics

are not necessarily well versed in explaining the

fundamental mathematics concepts such as area and

volume to children. In this study, the participants were

asked to explain mathematics for middle graders, and

we wonder how their responses might have changed if

they had to explain for their peers or much younger

children.

Although this study investigated elementary and

middle school PSTs’ knowledge of area measurement

as the baseline data, it has yet to complete a

comprehensive line of research regarding

implementation of a curriculum for mathematics teacher

education that is designed to improve content and

pedagogy of PSTs. In the U.S. context of mathematics

teacher education, teacher's content knowledge has

been recognized as the panacea for all the problems

confronting students in the U.S. classroom. In this

vein, one could well argue that the low content

knowledge of the participants explains the unsuccessful

responses away. Having said that, Cooney(1994)'s

statement still rings true: "there is little evidence about

the relationship of elementary teachers' knowledge of

mathematics to the way mathematics is taught," (p.
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107). More importantly, there is little work in teacher

education in Korea or the U.S. on providing

pre-service teachers with the kind of learning

experiences in teacher education where pre-service

teachers revisit school mathematics, reflect on their

own misconceptions and struggles in the curriculum

(i.e., the baseline data in our study), and improve

curriculum and instruction. Therefore, future research

looking into a curriculum that reforms mathematics

teacher education and instruction, through collaboration

between mathematics educators (at each developmental

period from Pre-K through 12 education) and

mathematics education researchers, is warranted. This

research could include (1) an extended version of this

study categorizing the nuances of pre-service teachers'

relational knowledge and resourcefulness in school

mathematics and proposing programs to improve them

and implement them in the classroom and (2) any

longitudinal studies of PSTs and their initial knowledge

of mathematics and pedagogy respectively, improved

knowledge and attitude through learning (or the

absence of it) in teacher education, and the ways in

which teaching is enacted in actual classrooms during

the first year of instruction.
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