DOI QR코드

DOI QR Code

Application of Vendor-Neutral Iterative Reconstruction Technique to Pediatric Abdominal Computed Tomography

  • Lim, Woo Hyeon (Department of Radiology, Seoul National University Hospital) ;
  • Choi, Young Hun (Department of Radiology, Seoul National University Hospital) ;
  • Park, Ji Eun (Department of Radiology, Seoul National University Hospital) ;
  • Cho, Yeon Jin (Department of Radiology, Seoul National University Hospital) ;
  • Lee, Seunghyun (Department of Radiology, Seoul National University Hospital) ;
  • Cheon, Jung-Eun (Department of Radiology, Seoul National University Hospital) ;
  • Kim, Woo Sun (Department of Radiology, Seoul National University Hospital) ;
  • Kim, In-One (Department of Radiology, Seoul National University Hospital) ;
  • Kim, Jong Hyo (Department of Radiology, Seoul National University College of Medicine)
  • Received : 2018.10.12
  • Accepted : 2019.06.05
  • Published : 2019.09.01

Abstract

Objective: To compare image qualities between vendor-neutral and vendor-specific hybrid iterative reconstruction (IR) techniques for abdominopelvic computed tomography (CT) in young patients. Materials and Methods: In phantom study, we used an anthropomorphic pediatric phantom, age-equivalent to 5-year-old, and reconstructed CT data using traditional filtered back projection (FBP), vendor-specific and vendor-neutral IR techniques (ClariCT; ClariPI) in various radiation doses. Noise, low-contrast detectability and subjective spatial resolution were compared between FBP, vendor-specific (i.e., iDose1 to 5; Philips Healthcare), and vendor-neutral (i.e., ClariCT1 to 5) IR techniques in phantom. In 43 patients (median, 14 years; age range 1-19 years), noise, contrast-to-noise ratio (CNR), and qualitative image quality scores of abdominopelvic CT were compared between FBP, iDose level 4 (iDose4), and ClariCT level 2 (ClariCT2), which showed most similar image quality to clinically used vendor-specific IR images (i.e., iDose4) in phantom study. Noise, CNR, and qualitative imaging scores were compared using one-way repeated measure analysis of variance. Results: In phantom study, ClariCT2 showed noise level similar to iDose4 (14.68-7.66 Hounsfield unit [HU] vs. 14.78-6.99 HU at CT dose index volume range of 0.8-3.8 mGy). Subjective low-contrast detectability and spatial resolution were similar between ClariCT2 and iDose4. In clinical study, ClariCT2 was equivalent to iDose4 for noise (14.26-17.33 vs. 16.01-18.90) and CNR (3.55-5.24 vs. 3.20-4.60) (p > 0.05). For qualitative imaging scores, the overall image quality ([reader 1, reader 2]; 2.74 vs. 2.07, 3.02 vs. 2.28) and noise (2.88 vs. 2.23, 2.93 vs. 2.33) of ClariCT2 were superior to those of FBP (p < 0.05), and not different from those of iDose4 (2.74 vs. 2.72, 3.02 vs. 2.98; 2.88 vs. 2.77, 2.93 vs. 2.86) (p > 0.05). Conclusion: Vendor-neutral IR technique shows image quality similar to that of clinically used vendor-specific hybrid IR technique for abdominopelvic CT in young patients.

Keywords

Acknowledgement

We thank Young Mi Chun, CT clinical scientist manager, Philips Healthcare Korea, for technical support.

References

  1. Coakley FV, Gould R, Yeh BM, Arenson RL. CT radiation dose: what can you do right now in your practice? AJR Am J Roentgenol 2011;196:619-625 https://doi.org/10.2214/AJR.10.5043
  2. Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol 2013;201:1283-1290 https://doi.org/10.2214/AJR.12.9720
  3. Hara AK, Wellnitz CV, Paden RG, Pavlicek W, Sahani DV. Reducing body CT radiation dose: beyond just changing the numbers. AJR Am J Roentgenol 2013;201:33-40 https://doi.org/10.2214/AJR.13.10556
  4. Maldjian PD, Goldman AR. Reducing radiation dose in body CT: a primer on dose metrics and key CT technical parameters. AJR Am J Roentgenol 2013;200:741-747 https://doi.org/10.2214/AJR.12.9768
  5. Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of radiation dose reduction and reconstruction algorithm on image noise, contrast, resolution, and detectability of subtle hypoattenuating liver lesions at multidetector CT: filtered back projection versus a commercial model-based iterative reconstruction algorithm. Radiology 2017;284:777-787 https://doi.org/10.1148/radiol.2017161736
  6. Zacharias C, Alessio AM, Otto RK, Iyer RS, Philips GS, Swanson JO, et al. Pediatric CT: strategies to lower radiation dose. AJR Am J Roentgenol 2013;200:950-956 https://doi.org/10.2214/AJR.12.9026
  7. Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013;23:1623-1631 https://doi.org/10.1007/s00330-012-2765-y
  8. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med 2012;28:94-108 https://doi.org/10.1016/j.ejmp.2012.01.003
  9. Lee KB, Goo HW. Quantitative image quality and histogram-based evaluations of an iterative reconstruction algorithm at low-to-ultralow radiation dose levels: a phantom study in chest CT. Korean J Radiol 2018;19:119-129 https://doi.org/10.3348/kjr.2018.19.1.119
  10. Infante JC, Liu Y, Rigsby CK. CT image quality in sinogram affirmed iterative reconstruction phantom study - is there a point of diminishing returns? Pediatr Radiol 2017;47:333-341 https://doi.org/10.1007/s00247-016-3745-1
  11. Won Kim C, Kim JH. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images. Med Phys 2014;41:011901 https://doi.org/10.1118/1.4830431
  12. Ahn CK, Yang Z, Heo C, Jin H, Park B, Kim JH. A deep learning-enabled iterative reconstruction of ultra-low-dose CT: use of synthetic sinogram-based noise simulation technique. SPIE Medical Imaging 2018;10573:1057335
  13. Moore BM, Brady SL, Mirro AE, Kaufman RA. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys 2014;41:071917 https://doi.org/10.1118/1.4884227
  14. Strauss KJ, Goske MJ. Estimated pediatric radiation dose during CT. Pediatr Radiol 2011;41 Suppl 2:472-482 https://doi.org/10.1007/s00247-011-2179-z
  15. Ryu YJ, Choi YH, Cheon JE, Ha S, Kim WS, Kim IO. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom. Pediatr Radiol 2016;46:303-315 https://doi.org/10.1007/s00247-015-3486-6
  16. CIRS. ATOM® Dosimetry Phantoms. Available at: http://www.cirsinc.com/wp-content/uploads/2019/05/701-706-ATOM-PB-120418.pdf. Accessed August 9, 2019
  17. Nickoloff EL. Measurement of the PSF for a CT scanner: appropriate wire diameter and pixel size. Phys Med Biol 1988;33:149-155 https://doi.org/10.1088/0031-9155/33/1/014
  18. Baek J, Pelc NJ. The noise power spectrum in CT with direct fan beam reconstruction. Med Phys 2010;37:2074-2081 https://doi.org/10.1118/1.3378673
  19. Mayo-Smith WW, Gupta H, Ridlen MS, Brody JM, Clements NC, Cronan JJ. Detecting hepatic lesions: the added utility of CT liver window settings. Radiology 1999;210:601-604 https://doi.org/10.1148/radiology.210.3.r99mr07601
  20. Love A, Olsson ML, Siemund R, Stalhammar F, Bjorkman-Burtscher IM, Soderberg M. Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 2013;86:20130388 https://doi.org/10.1259/bjr.20130388
  21. Karmazyn B, Liang Y, Ai H, Eckert GJ, Cohen MD, Wanner MR, et al. Optimization of hybrid iterative reconstruction level in pediatric body CT. AJR Am J Roentgenol 2014;202:426-431 https://doi.org/10.2214/AJR.13.10721
  22. Siegel MJ, Hildebolt C, Bradley D. Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology 2013;268:538-547 https://doi.org/10.1148/radiol.13122438
  23. Ryu YJ, Kim WS, Choi YH, Cheon JE, Lee SM, Cho HH, et al. Pediatric chest CT: wide-volume and helical scan modes in 320-MDCT. AJR Am J Roentgenol 2015;205:1315-1321 https://doi.org/10.2214/AJR.14.13941
  24. Lee JH, Choi YH, Cheon JE, Lee SM, Cho HH, Shin SM, et al. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 2015;45:840-846 https://doi.org/10.1007/s00247-014-3244-1
  25. Russell MT, Fink JR, Rebeles F, Kanal K, Ramos M, Anzai Y. Balancing radiation dose and image quality: clinical applications of neck volume CT. AJNR Am J Neuroradiol 2008;29:727-731 https://doi.org/10.3174/ajnr.A0891
  26. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 2012;22:276-282 https://doi.org/10.11613/BM.2012.031
  27. Fletcher JG, Hara AK, Fidler JL, Silva AC, Barlow JM, Carter RE, et al. Observer performance for adaptive, image-based denoising and filtered back projection compared to scannerbased iterative reconstruction for lower dose CT enterography. Abdom Imaging 2015;40:1050-1059 https://doi.org/10.1007/s00261-015-0384-1
  28. Khawaja RD, Singh S, Blake M, Harisinghani M, Choy G, Karaosmanoglu A, et al. Ultralow-dose abdominal computed tomography: comparison of 2 iterative reconstruction techniques in a prospective clinical study. J Comput Assist Tomogr 2015;39:489-498 https://doi.org/10.1097/RCT.0000000000000248
  29. Pourjabbar S, Singh S, Kulkarni N, Muse V, Digumarthy SR, Khawaja RD, et al. Dose reduction for chest CT: comparison of two iterative reconstruction techniques. Acta Radiol 2015;56:688-695 https://doi.org/10.1177/0284185114537256
  30. Padole A, Digumarthy S, Flores E, Madan R, Mishra S, Sharma A, et al. Assessment of chest CT at CTDIvol less than 1mGy with iterative reconstruction techniques. Br J Radiol 2017;90:20160625 https://doi.org/10.1259/bjr.20160625

Cited by

  1. Deep Learning Algorithm for Simultaneous Noise Reduction and Edge Sharpening in Low-Dose CT Images: A Pilot Study Using Lumbar Spine CT vol.22, 2021, https://doi.org/10.3348/kjr.2021.0140
  2. Advances in deep learning for computed tomography denoising vol.9, pp.26, 2019, https://doi.org/10.12998/wjcc.v9.i26.7614