DOI QR코드

DOI QR Code

Clinical Significance and Therapeutic Implication of Nocturnal Hypertension: Relationship between Nighttime Blood Pressure and Quality of Sleep

  • Cho, Myeong-Chan (Department of Internal Medicine, College of Medicine, Chungbuk National University)
  • Received : 2019.07.29
  • Accepted : 2019.07.31
  • Published : 2019.09.30

Abstract

Recent global hypertension guidelines recommend an early, strict and 24-hour blood pressure (BP) control for the prevention of target organ damage and cardiovascular events. Out-of-office BP measurement such as ambulatory BP monitoring and home BP monitoring is now widely utilized to rule out white-coat hypertension, to detect masked hypertension, to evaluate the effects of antihypertensive medication, to analyze diurnal BP variation, and to increase drug adherence. Nocturnal hypertension has been neglected in the management of hypertension despite of its clinical significance. Nighttime BP and non-dipping patterns of BP are stronger risk predictors for the future cardiovascular mortality and morbidity than clinic or daytime BP. In addition to ambulatory or home daytime BP and 24-hour mean BP, nocturnal BP should be a new therapeutic target for the optimal treatment of hypertension to improve prognosis in hypertensive patients. This review will provide an overview of epidemiology, characteristics, and pathophysiology of nocturnal hypertension and clinical significance, therapeutic implication and future perspectives of nocturnal hypertension will be discussed.

Keywords

Acknowledgement

This work was supported by the intramural research grant of Chungbuk National University in 2015 and a fund (2018-ER6303-00) by Research of Korea Centers for Disease Control and Prevention.

References

  1. Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016;134:441-50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
  2. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006;367:1747-57. https://doi.org/10.1016/S0140-6736(06)68770-9
  3. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018;138:e484-594.
  4. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018;39:3021-104. https://doi.org/10.1093/eurheartj/ehy339
  5. Korean Society Hypertension (KSH); Hypertension Epidemiology Research Working Group, Kim HC, Cho MC. Korea hypertension fact sheet 2018. Clin Hypertens 2018;24:13. https://doi.org/10.1186/s40885-018-0098-0
  6. Li Y, Wang JG. Isolated nocturnal hypertension: a disease masked in the dark. Hypertension 2013;61:278-83. https://doi.org/10.1161/HYPERTENSIONAHA.111.00217
  7. Asayama K, Fujiwara T, Hoshide S, et al. Nocturnal blood pressure measured by home devices: evidence and perspective for clinical application. J Hypertens 2019;37:905-16. https://doi.org/10.1097/HJH.0000000000001987
  8. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension 2011;57:3-10. https://doi.org/10.1161/HYPERTENSIONAHA.109.133900
  9. Fan HQ, Li Y, Thijs L, et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J Hypertens 2010;28:2036-45. https://doi.org/10.1097/HJH.0b013e32833b49fe
  10. Head GA. The importance and prognostic value of nocturnal blood pressure assessments using inexpensive domestic devices. J Hypertens 2017;35:463-5. https://doi.org/10.1097/HJH.0000000000001244
  11. Kario K. Nocturnal hypertension: new technology and evidence. Hypertension 2018;71:997-1009. https://doi.org/10.1161/HYPERTENSIONAHA.118.10971
  12. Fagard RH, Celis H, Thijs L, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension 2008;51:55-61. https://doi.org/10.1161/HYPERTENSIONAHA.107.100727
  13. Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors of all-cause mortality in clinical ambulatory monitoring: unique aspects of blood pressure during sleep. Hypertension 2007;49:1235-41. https://doi.org/10.1161/HYPERTENSIONAHA.107.087262
  14. ABC-H InvestigatorsRoush GC, Fagard RH, et al. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13,844 patients with hypertension. J Hypertens 2014;32:2332-40. https://doi.org/10.1097/HJH.0000000000000355
  15. Yano Y, Kario K. Nocturnal blood pressure and cardiovascular disease: a review of recent advances. Hypertens Res 2012;35:695-701. https://doi.org/10.1038/hr.2012.26
  16. O'Brien E, Sheridan J, O'Malley K. Dippers and non-dippers. Lancet 1988;2:397. https://doi.org/10.1016/S0140-6736(88)92867-X
  17. Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension 2001;38:852-7. https://doi.org/10.1161/hy1001.092640
  18. Boggia J, Thijs L, Hansen TW, et al. Ambulatory blood pressure monitoring in 9357 subjects from 11 populations highlights missed opportunities for cardiovascular prevention in women. Hypertension 2011;57:397-405. https://doi.org/10.1161/HYPERTENSIONAHA.110.156828
  19. Ohkubo T, Hozawa A, Yamaguchi J, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 2002;20:2183-9. https://doi.org/10.1097/00004872-200211000-00017
  20. Boggia J, Li Y, Thijs L, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet 2007;370:1219-29. https://doi.org/10.1016/S0140-6736(07)61538-4
  21. Lee HY, Shin J, Kim GH, et al. 2018 Korean Society of Hypertension Guidelines for the management of hypertension: part II-diagnosis and treatment of hypertension. Clin Hypertens 2019;25:20. https://doi.org/10.1186/s40885-019-0124-x
  22. Li Y, Staessen JA, Lu L, Li LH, Wang GL, Wang JG. Is isolated nocturnal hypertension a novel clinical entity? Findings from a Chinese population study. Hypertension 2007;50:333-9. https://doi.org/10.1161/HYPERTENSIONAHA.107.087767
  23. Thomas SJ, Booth JN 3rd, Bromfield SG, et al. Clinic and ambulatory blood pressure in a populationbased sample of African Americans: the Jackson Heart Study. J Am Soc Hypertens 2017;11:204-212.e5. https://doi.org/10.1016/j.jash.2017.02.001
  24. Melgarejo JD, Maestre GE, Thijs L, et al. Prevalence, treatment, and control rates of conventional and ambulatory hypertension across 10 populations in 3 continents. Hypertension 2017;70:50-8. https://doi.org/10.1161/HYPERTENSIONAHA.117.09188
  25. Sakhuja S, Booth JN 3rd, Lloyd-Jones DM, et al. Health behaviors, nocturnal hypertension, and nondipping blood pressure: the coronary artery risk development in young adults and Jackson Heart Study. Am J Hypertens 2019;32:759-68. https://doi.org/10.1093/ajh/hpz017
  26. de la Sierra A, Gorostidi M, Banegas JR, Segura J, de la Cruz JJ, Ruilope LM. Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile? Am J Hypertens 2014;27:680-7. https://doi.org/10.1093/ajh/hpt175
  27. Hoshide S, Kario K, de la Sierra A, et al. Ethnic differences in the degree of morning blood pressure surge and in its determinants between Japanese and European hypertensive subjects: data from the ARTEMIS study. Hypertension 2015;66:750-6. https://doi.org/10.1161/HYPERTENSIONAHA.115.05958
  28. Hosohata K, Kikuya M, Ohkubo T, et al. Reproducibility of nocturnal blood pressure assessed by self-measurement of blood pressure at home. Hypertens Res 2007;30:707-12. https://doi.org/10.1291/hypres.30.707
  29. Ushio H, Ishigami T, Araki N, et al. Utility and feasibility of a new programmable home blood pressure monitoring device for the assessment of nighttime blood pressure. Clin Exp Nephrol 2009;13:480-5. https://doi.org/10.1007/s10157-009-0192-4
  30. Ishikawa J, Hoshide S, Eguchi K, et al. Nighttime home blood pressure and the risk of hypertensive target organ damage. Hypertension 2012;60:921-8. https://doi.org/10.1161/HYPERTENSIONAHA.112.198101
  31. Kario K, Tomitani N, Kanegae H, et al. Comparative effects of an angiotensin II receptor blocker (ARB)/diuretic vs. ARB/calcium-channel blocker combination on uncontrolled nocturnal hypertension evaluated by information and communication technology-based nocturnal home blood pressure monitoring- the NOCTURNE study. Circ J 2017;81:948-57. https://doi.org/10.1253/circj.CJ-17-0109
  32. Andreadis EA, Agaliotis G, Kollias A, Kolyvas G, Achimastos A, Stergiou GS. Night-time home versus ambulatory blood pressure in determining target organ damage. J Hypertens 2016;34:438-44. https://doi.org/10.1097/HJH.0000000000000815
  33. Lindroos AS, Johansson JK, Puukka PJ, et al. The association between home vs. ambulatory night-time blood pressure and end-organ damage in the general population. J Hypertens 2016;34:1730-7. https://doi.org/10.1097/HJH.0000000000000995
  34. Kuwabara M, Harada K, Hishiki Y, Kario K. Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL. J Clin Hypertens (Greenwich) 2019;21:853-8. https://doi.org/10.1111/jch.13499
  35. Kollias A, Ntineri A, Stergiou GS. Association of night-time home blood pressure with night-time ambulatory blood pressure and target-organ damage: a systematic review and meta-analysis. J Hypertens 2017;35:442-52. https://doi.org/10.1097/HJH.0000000000001189
  36. Carek AM, Conant J, Joshi A, Kang H, Inan OT. SeismoWatch: wearable cuffless blood pressure monitoring using pulse transit time. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017;1:40.
  37. Chen A. Samsung's Galaxy Watch is supposed to measure blood pressure? But how accurate will it be? [Internet]. New York (NY): Vox Media; 2019 [cited 2019 Aug 2]. Available from: https://www.theverge.com/2019/2/25/18236373/samsung-galaxy-watch-blood-pressure-monitoring-health-fda.
  38. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1997;96:1859-62. https://doi.org/10.1161/01.CIR.96.6.1859
  39. Kimura G. Kidney and circadian blood pressure rhythm. Hypertension 2008;51:827-8. https://doi.org/10.1161/HYPERTENSIONAHA.108.110213
  40. Kario K. Systemic hemodynamic atherothrombotic syndrome and resonance hypothesis of blood pressure variability: triggering cardiovascular events. Korean Circ J 2016;46:456-67. https://doi.org/10.4070/kcj.2016.46.4.456
  41. Wang C, Zhang J, Liu X, et al. Reversed dipper blood-pressure pattern is closely related to severe renal and cardiovascular damage in patients with chronic kidney disease. PLoS One 2013;8:e55419. https://doi.org/10.1371/journal.pone.0055419
  42. Liu M, Takahashi H, Morita Y, et al. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol Dial Transplant 2003;18:563-9. https://doi.org/10.1093/ndt/18.3.563
  43. Legramante JM, Galante A. Sleep and hypertension: a challenge for the autonomic regulation of the cardiovascular system. Circulation 2005;112:786-8. https://doi.org/10.1161/CIRCULATIONAHA.105.555714
  44. Lombardi F, Parati G. An update on: cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovasc Res 2000;45:200-11. https://doi.org/10.1016/S0008-6363(99)00329-6
  45. Pepin JL, Borel AL, Tamisier R, Baguet JP, Levy P, Dauvilliers Y. Hypertension and sleep: overview of a tight relationship. Sleep Med Rev 2014;18:509-19. https://doi.org/10.1016/j.smrv.2014.03.003
  46. Marin JM, Agusti A, Villar I, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA 2012;307:2169-76.
  47. Baguet JP, Hammer L, Levy P, et al. Night-time and diastolic hypertension are common and underestimated conditions in newly diagnosed apnoeic patients. J Hypertens 2005;23:521-7. https://doi.org/10.1097/01.hjh.0000160207.58781.4e
  48. Haentjens P, Van Meerhaeghe A, Moscariello A, et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch Intern Med 2007;167:757-64. https://doi.org/10.1001/archinte.167.8.757
  49. Turnbull F; Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003;362:1527-35. https://doi.org/10.1016/S0140-6736(03)14739-3
  50. Hoshide S, Ishikawa J, Eguchi K, Ojima T, Shimada K, Kario K. Masked nocturnal hypertension and target organ damage in hypertensives with well-controlled self-measured home blood pressure. Hypertens Res 2007;30:143-9. https://doi.org/10.1291/hypres.30.143
  51. Komori T, Eguchi K, Tomizawa H, et al. Factors associated with incident ischemic stroke in hospitalized heart failure patients: a pilot study. Hypertens Res 2008;31:289-94. https://doi.org/10.1291/hypres.31.289
  52. Sega R, Facchetti R, Bombelli M, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation 2005;111:1777-83. https://doi.org/10.1161/01.CIR.0000160923.04524.5B
  53. Salvetti M, Muiesan ML, Rizzoni D, et al. Night time blood pressure and cardiovascular structure in a middle-aged general population in northern Italy: the Vobarno Study. J Hum Hypertens 2001;15:879-85. https://doi.org/10.1038/sj.jhh.1001286
  54. Shin J, Xu E, Lim YH, et al. Relationship between nocturnal blood pressure and 24-h urinary sodium excretion in a rural population in Korea. Clin Hypertens 2014;20:9. https://doi.org/10.1186/2056-5909-1-3
  55. Lim YH, Enkhdorj R, Kim BK, Kim SG, Kim JH, Shin J. Correlation between proximal abdominal aortic stiffness measured by ultrasound and brachial-ankle pulse wave velocity. Korean Circ J 2013;43:391-9. https://doi.org/10.4070/kcj.2013.43.6.391
  56. Kario K. Essential manual of 24-hour blood pressure management from morning to nocturnal hypertension. London: Wiley-Blackwell; 2015.
  57. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342:145-53. https://doi.org/10.1056/NEJM200001203420301
  58. Svensson P, de Faire U, Sleight P, Yusuf S, Ostergren J. Comparative effects of ramipril on ambulatory and office blood pressures: a HOPE Substudy. Hypertension 2001;38:E28-32.
  59. Hermida RC, Ayala DE. Chronotherapy with the angiotensin-converting enzyme inhibitor ramipril in essential hypertension: improved blood pressure control with bedtime dosing. Hypertension 2009;54:40-6. https://doi.org/10.1161/HYPERTENSIONAHA.109.130203
  60. Pareek AK, Messerli FH, Chandurkar NB, et al. Efficacy of low-dose chlorthalidone and hydrochlorothiazide as assessed by 24-h ambulatory blood pressure monitoring. J Am Coll Cardiol 2016;67:379-89.
  61. Kario K. Proposal of a new strategy for ambulatory blood pressure profile-based management of resistant hypertension in the era of renal denervation. Hypertens Res 2013;36:478-84. https://doi.org/10.1038/hr.2013.19
  62. Imaizumi Y, Eguchi K, Murakami T, Arakawa K, Tsuchihashi T, Kario K. High salt intake is independently associated with hypertensive target organ damage. J Clin Hypertens (Greenwich) 2016;18:315-21. https://doi.org/10.1111/jch.12668
  63. Yasuda G, Hasegawa K, Kuji T, et al. Effects of doxazosin on ambulatory blood pressure and sympathetic nervous activity in hypertensive Type 2 diabetic patients with overt nephropathy. Diabet Med 2005;22:1394-400. https://doi.org/10.1111/j.1464-5491.2005.01636.x
  64. Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos Pivotal Trial. J Am Coll Cardiol 2011;58:765-73. https://doi.org/10.1016/j.jacc.2011.06.008
  65. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009;373:1275-81. https://doi.org/10.1016/S0140-6736(09)60566-3
  66. Kario K, Bhatt DL, Kandzari DE, et al. Impact of renal denervation on patients with obstructive sleep apnea and resistant hypertension: insights from the SYMPLICITY HTN-3 trial. Circ J 2016;80:1404-12. https://doi.org/10.1253/circj.CJ-16-0035
  67. Hermida RC, Hermida RC. Ambulatory blood pressure monitoring in the prediction of cardiovascular events and effects of chronotherapy: rationale and design of the MAPEC study. Chronobiol Int 2007;24:749-75. https://doi.org/10.1080/07420520701535837
  68. Mahabala C, Kamath P, Bhaskaran U, Pai ND, Pai AU. Antihypertensive therapy: nocturnal dippers and nondippers. Do we treat them differently? Vasc Health Risk Manag 2013;9:125-33.
  69. Hermida RC, Ayala DE, Mojon A, Fernandez JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int 2010;27:1629-51. https://doi.org/10.3109/07420528.2010.510230
  70. Gorostidi M. Effect of Olmesartan-based therapy on therapeutic indicators obtain through out-of-office blood pressure. Cardiol Ther 2015;4:19-30. https://doi.org/10.1007/s40119-015-0042-2
  71. Hermida RC, Ayala DE, Fernandez JR, Calvo C. Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. Hypertension 2007;50:715-22. https://doi.org/10.1161/HYPERTENSIONAHA.107.094235
  72. Tofe Povedano S, Garcia De La Villa B. 24-Hour and night time blood pressures in type 2 diabetic hypertensive patients following morning or evening administration of Olmesartan. J Clin Hypertens (Greenwich) 2009;11:426-31. https://doi.org/10.1111/j.1751-7176.2009.00152.x
  73. Matsui Y, Eguchi K, O'Rourke MF, et al. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension 2009;54:716-23. https://doi.org/10.1161/HYPERTENSIONAHA.109.131466
  74. Hermida RC, Ayala DE, Fernandez JR, Calvo C. Chronotherapy improves blood pressure control and reverts the nondipper pattern in patients with resistant hypertension. Hypertension 2008;51:69-76. https://doi.org/10.1161/HYPERTENSIONAHA.107.096933
  75. Kario K, Okada K, Kato M, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA Study. Circulation 2018;139:2089-97. https://doi.org/10.1161/CIRCULATIONAHA.118.037076
  76. American Diabetes Association. 8. Cardiovascular disease and risk management. Diabetes Care 2016;39 Suppl 1:S60-71. https://doi.org/10.2337/dc16-er09
  77. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of Medical Care in Diabetes-2019. Diabetes Care 2019;42:S103-23.
  78. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014;371:993-1004. https://doi.org/10.1056/NEJMoa1409077
  79. Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J 2015;36:1967-73. https://doi.org/10.1093/eurheartj/ehv142
  80. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med 2015;373:2117-28. https://doi.org/10.1056/NEJMoa1504720