DOI QR코드

DOI QR Code

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha (Department of Electronics and Instrumentation, Siksha 'O' Anusandhan University) ;
  • Hajra, Sugato (Department of Electronics and Instrumentation, Siksha 'O' Anusandhan University) ;
  • Choudhary, Ram Naresh Prasad (Department of Physics, Siksha 'O' Anusandhan University)
  • 투고 : 2019.04.14
  • 심사 : 2019.08.06
  • 발행 : 2019.08.27

초록

A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

키워드

참고문헌

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, K. Homma, T. Nagaya and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  2. B. Tiwari and R. N. P. Choudhary, IEEE Trans. Dielectr. Insul., 17, 5 (2010). https://doi.org/10.1109/TDEI.2010.5411996
  3. S. O. Leontsev and R. E. Eitel, J. Mater. Res., 26, 9 (2011). https://doi.org/10.1557/jmr.2010.44
  4. G Smolenskii, V Isupov, A Agranovskaya and N Krainik, Sov. Phys. Solid State, 2, 2651(1961).
  5. M. Ichiki, L. Zhang, M. Tanaka and R. Maeda, J. Eur. Ceram. Soc., 24, 1693 (2004). https://doi.org/10.1016/S0955-2219(03)00475-8
  6. P. Wang, Y. Li and Y. Lu, J. Eur. Ceram. Soc., 31, 2005 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.023
  7. H. L. Sun, Q. J. Zheng, Y. Wan, Y. Chen, X. Wu, K. W. Kwok, H. L. W. Chan and D. M. Lin, J. Mater. Sci. Mater. Electron. 26, 5270 (2015). https://doi.org/10.1007/s10854-015-3063-7
  8. W. Xiong, J. Electron. Mater., 45, 4005 (2016). https://doi.org/10.1007/s11664-016-4623-1
  9. W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Maa, H. Xue, L. Chu, J. Yang, X. Li and W. Huang, Ceram. Int., 42, 12838 (2016) https://doi.org/10.1016/j.ceramint.2016.05.048
  10. R. H. Buttner and E. N. Maslen, Acta Crystallogr., Sect. B: Struct. Sci., 48, 764 (1992)
  11. D. Grier and G. McCarthy, North Dakota State University, Fargo, North Dakota, USA., ICDD Grant-in-Aid, (1991) p. 1.
  12. J. E. Garcia, V. Gomis, R. Perez, A. Albareda and J. A. Eiran, Appl. Phys. Lett., 91, 0429021 (2007).
  13. M. Sahu, S. K. Pradhan, S. Hajra, B. K. Panigrahi and R. N. P. Choudhary, Appl. Phys. A: Mater. Sci. Process., 125, 183 (2019) https://doi.org/10.1007/s00339-019-2491-2
  14. S. Hajra, A. Tripathy, B. K. Panigrahi and R. N. P. Choudhary, Mater. Res. Express, 6, 076304 (2019). https://doi.org/10.1088/2053-1591/ab149b
  15. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan and Y. Lin, J. Appl. Phys., 121, 084103 (2017). https://doi.org/10.1063/1.4977107
  16. S. Z. Ajabshir, M. S. Niasari and M. Hamadaniana, RSC Adv., 5, 33792 (2015). https://doi.org/10.1039/C5RA00817D
  17. D. P. Almond and A. R. West, Solid State Ionics, 11, 57 (1983). https://doi.org/10.1016/0167-2738(83)90063-2
  18. S. Dash, R. N. P. Choudhary and A. Kumar, J. Phys. Chem. Solids, 75, 1376 (2014). https://doi.org/10.1016/j.jpcs.2014.07.018
  19. H. Yang, F. Yan, G. Zhang, Y. Lin and F. Wang, J. Alloys Compd., 720, 116 (2017). https://doi.org/10.1016/j.jallcom.2017.05.158
  20. A. K. Jonscher, Nature, 267, 673 (1977). https://doi.org/10.1038/267673a0
  21. M. Ram, Phys. B (Amsterdam, Neth.), 405, 602 (2010). https://doi.org/10.1016/j.physb.2009.09.073
  22. H. Jain and J. N. Mundy, J Non-Cryst Solids, 91, 315 (1987). https://doi.org/10.1016/S0022-3093(87)80342-3
  23. A. Ghosh, Phys. Rev. B: Condens. Matter Mater. Phys., 42, 1388 (1990). https://doi.org/10.1103/PhysRevB.42.1388
  24. M. M. El-Nahass, A. A. Atta, M. A. Kamel and S. Y. Huthaily, Vacuum, 91, 14 (2013). https://doi.org/10.1016/j.vacuum.2012.10.010
  25. S. Barick, S. Ahemed and S. Hajra, Appl. Phys. A: Mater. Sci. Process., 125, 200 (2019). https://doi.org/10.1007/s00339-019-2496-x
  26. H. J. Kroger and F. A. Vink, Solid State Phys., 3, 307 (1956). https://doi.org/10.1016/S0081-1947(08)60135-6
  27. N. Hirose and A. R. West, J. Am. Ceram. Soc., 79, 1633 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08775.x
  28. J. R. MacDonald, Solid State Ionics 13, 147 (1984). https://doi.org/10.1016/0167-2738(84)90049-3