DOI QR코드

DOI QR Code

Isolation of a Mutant with Thermotolerance and Ethanol Tolerance Using Proofreading-deficient DNA Polymerases in Saccharomyces cerevisiae

출아효모에서 proofreading-deficient DNA polymerase를 이용한 내열성 및 에탄올내성 변이 주의 분리

  • Kim, Yeon-Hee (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University)
  • 김연희 (동의대학교 바이오응용공학부 의생명공학전공)
  • Received : 2019.05.27
  • Accepted : 2019.06.19
  • Published : 2019.08.30

Abstract

In this study, we constructed a biological system that exhibited thermotolerance, ethanol tolerance, and increased ethanol productivity using a random mutagenesis method. We attempted to isolate a thermotolerant mutant using proofreading-deficient DNA polymerase ${\delta}$ and ${\varepsilon}$ encoded by the pol3 and pol2 genes, respectively, in Saccharomyces cerevisiae. To obtain mutants that could grow at high temperatures ($38^{\circ}C$ and $40^{\circ}C$), random mutagenesis of AMY410 (pol2-4) and AMY126 (pol3-01) strains was induced. The parental strains (AMY410 and AMY126) grew poorly at temperatures higher than $38^{\circ}C$. By stepwise elevation of the incubation temperature, AMY410-Ht (heat tolerance) and AMY126-Ht strains that proliferated at $40^{\circ}C$ were obtained. These strains were further incubated in medium containing 6% and 8% ethanol and then AMY410-HEt (heat and ethanol tolerance) and AMY126-HEt strain with ethanol tolerance at an 8% ethanol concentration was obtained. The AMY126-HEt strain grew even at an ethanol concentration of 10%. Furthermore, following the addition of high concentrations of glucose (5% and 10%), an AMY126-HEt3 strain with increased ethanol productivity was isolated. This strain produced 24.7 g/l of ethanol (95% theoretical conversion yield) from 50 g/l of glucose. The findings demonstrate that a new biological system (yeast strain) showing various phenotypes can be easily and efficiently bred by random mutagenesis of a proofreading- deficient mutant.

본 연구는 내열성, 에탄올내성 및 에탄올생산성이 향상된 새로운 생물시스템을 육종하기 위해 DNA 복제 시 교정기능이 결여된 변이주(proofreading-deficient mutant)를 이용한 무작위적 돌연변이(random mutagenesis)를 유도하였다. DNA polymerase ${\delta}$${\varepsilon}$의 catalytic subunit를 코드하고 있는 POL3와 POL2 유전자가 변이된 AMY410 균주(pol2-4)와 AMY126 균주(pol3-01)를 이용하여 $30^{\circ}C$, $38^{\circ}C$, $48^{\circ}C$에서 내열성 변이를 유도하였다. AMY410 균주와 AMY126 균주는 $38^{\circ}C$ 이상의 온도에서는 거의 자랄 수가 없기 때문에, 배양 온도를 점차 높여가며 변이를 유도한 결과, $40^{\circ}C$에서도 잘 자라는 AMY410-Ht와 AMY126-Ht 균주를 선별할 수 있었다. 또한 AMY410-Ht와 AMY126-Ht 균주의 에탄올내성을 추가로 획득하기 위해 6%와 8% 에탄올이 함유된 배지에서 변이를 유도하였고, 8% 에탄올 농도에서 내성을 가지는 AMY410-HEt 균주와 AMY126-HEt 균주를 분리하였다. 특히 AMY126-HEt 균주는 10% 에탄올 농도에서도 내성을 가짐을 확인할 수 있었다. AMY126-HEt 균주의 에탄올생산성의 증가를 위한 변이는 고농도 당(glucose)의 첨가에 의해 유도되었고, 50 g/l의 고농도 glucose를 함유한 배지에서 24.7 g/l의 에탄올(95% 이론적 전환수율)을 생산할 수 있는 고효율 에탄올 생산균주(AMY126-HEt3)를 최종 분리하였다. 따라서, 본 연구를 통해서 교정기능이 결여된 균주(proofreading-deficient mutant)를 사용한 돌연변이법으로 산업적으로 유용한 다양한 형질을 가진 생물시스템의 구축이 가능함을 확인하였다.

Keywords

References

  1. Attfield, P. V. 1997. Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol. 15, 1351-1357. https://doi.org/10.1038/nbt1297-1351
  2. Bae, Y. W., Seong, P. J., Cho, D. H., Shin, S. J., Kim, S. W., Han, S. O., Kim, Y. H. and Park, C. H. 2010. Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis. KSBB J. 25, 533-538.
  3. Bara, M. T. F., Lima, A. L. and Ulhoa, C. J. 2003. Purification and characterization of an exo-${\beta}$ -1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol. Lett. 219, 81-85. https://doi.org/10.1016/S0378-1097(02)01191-6
  4. Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160, 1084-1093. https://doi.org/10.1007/s12010-009-8552-9
  5. Jeon, H. T., Park, U. M. and Kim, K. 2011. The use of aureobasidin A resistant gene as the dominant selectable marker for the selection of industrial yeast hybrid. Kor. J. Microbiol. Biotechnol. 39, 111-118.
  6. Kawasaki, Y. and Sugino, A. 2001. Yeast replicative DNA polymerases and their role at the replication fork. Mol. Cells 12, 277-285.
  7. Kim, Y. H. 2019. Construction of yeast strain suitable for bioethanol production by using fusion method. J. Life Sci. 29, 376-381. https://doi.org/10.5352/JLS.2019.29.3.376
  8. Ko, J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G. and Kim, T. H. 2009. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 100, 4374-4380. https://doi.org/10.1016/j.biortech.2009.04.026
  9. Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A., van Dijken, J. P. and Pronk, J. T. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomayces cerevisiae strain. FEMS Yeast Res. 5, 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
  10. Lee, J. S., Hong, S. K., Lee, C, R., Nam, S. W., Jeon, S. J and Kim, Y. H. 2019. Production of ethanol from agarose by unified enzymatic saccharification and fermentation in recombinant yeast. J. Mircobiol. Biotechnol. 29, 625-632.
  11. Morrison, A., Bell, J. B., Kunkel, T. A. and Sugino, A. 1991. Eukaryotic DNA polymerase amino acid sequence required for 3' exonuclease activity. Proc. Natl. Acad. Sci. USA. 88, 9473-9477. https://doi.org/10.1073/pnas.88.21.9473
  12. Morrison, A. and Sugino, A. 1994. The 3'${\rightarrow}$5'exonucleases of both DNA polymerases ${\delta}$ and ${\varepsilon}$ participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242, 289-296. https://doi.org/10.1007/BF00280418
  13. Murakami, K., Tao, E., Ito, Y., Sugiyama, M., Kaneko, Y., Harashima, S., Sumiya, T., Nakamura, A. and Nishizawa, M. 2007. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl. Microbiol. Biotechnol. 75, 589-597. https://doi.org/10.1007/s00253-007-0859-2
  14. Naik, S. N., Goud, V. V., Rout, P. K. and Dalai, A. K. 2010. Production of first and second generation biofuels: a comprehensive review. Renew Sust. Energ. Rev. 14, 578-597. https://doi.org/10.1016/j.rser.2009.10.003
  15. Park, A. H. and Kim, Y. H. 2013. Breeding of ethanol producing and tolerant Saccharomyces cerevisiae by using genome shuffling. J. Life Sci. 23, 1192-1198. https://doi.org/10.5352/JLS.2013.23.10.1192
  16. Park, A. H., Sugiyama, M., Harashima, S. and Kim, Y. H. 2012. Creation of an ethanol-tolerant yeast strain by genome reconstruction based on chromosome splitting technology. J. Mircobiol. Biotechnol. 22, 184-189.
  17. Shevelev, I. V. and Hubscher, U. 2002. The 3'-5'exonucleases. Nat. Rev. Mol. Cell Biol. 3, 364-376. https://doi.org/10.1038/nrm804
  18. Shi, D. J., Wang, C. L. and Wang, K. M. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36, 139-147. https://doi.org/10.1007/s10295-008-0481-z
  19. Simon, M., Giot, L. and Faye, G. 1991. The 3' to 5'exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 10, 2165-2170. https://doi.org/10.1002/j.1460-2075.1991.tb07751.x
  20. Widianto, D., Yamamoto, E., Sugiyama, M., Mukai, Y., Kaneko, Y., Oshima, Y., Nishizawa, M. and Harashima, S. 2003. Creating a Saccharomyces cerevisiae haploid strain having 21 chromosomes. J. Biosc. Bioeng. 95, 89-94. https://doi.org/10.1016/S1389-1723(03)80154-8
  21. Yanagisawa, M., Kawai, S. and Murata, K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4, 224-235. https://doi.org/10.4161/bioe.23396