DOI QR코드

DOI QR Code

연골세포 및 관절연골의 노화 과정에서 세포내 항산화 인자들의 변화

Change in the Levels of Intracellular Antioxidants during Aging of Articular Chondrocytes and Cartilage

  • 김강미 (부산대학교 의과대학 미생물학 및 면역학교실) ;
  • 김윤재 (동아대학교 의과대학 해부학 및 세포생물학교실) ;
  • 김종민 (동아대학교 의과대학 해부학 및 세포생물학교실) ;
  • 손동현 (부산대학교 의과대학 미생물학 및 면역학교실) ;
  • 박영철 (부산대학교 의과대학 미생물학 및 면역학교실)
  • Kim, Kang Mi (Department of Microbiology & Immunology, Pusan National University College of Medicine) ;
  • Kim, Yoon Jae (Department of Anatomy & Cell Biology, Dong-A University College of Medicine) ;
  • Kim, Jong Min (Department of Anatomy & Cell Biology, Dong-A University College of Medicine) ;
  • Sohn, Dong Hyun (Department of Microbiology & Immunology, Pusan National University College of Medicine) ;
  • Park, Young Chul (Department of Microbiology & Immunology, Pusan National University College of Medicine)
  • 투고 : 2019.05.20
  • 심사 : 2019.08.07
  • 발행 : 2019.08.30

초록

류마티스관절염(rheumatoid arthritis)과 골관절염(osteoarthritis) 같은 관절질환은 연골세포(chondrocytes) 감소와 관절연골(articular cartilage)의 분해를 수반한다. 최근, 연골세포의 활성과 연골 항상성(cartilage homeostasis)에 염증성 ROS (reactive oxygen species) burst 및 나이와 관련된 산화적 스트레스(oxidative stress)의 증가와 관련된 연구가 활발히 진행되고 있다. 본 연구는 관절연골로부터 분리한 연골세포의 노화 과정과 나이대별 관절연골에서 항산화 인자들(antioxidants)의 변화를 조사함으로써, 연골세포와 관절연골의 노화 과정 동안 산화적 스트레스로부터 조직을 보호하는 항산화 인자들의 역할을 규명하는데 목적이 있다. 쥐의 관절연골로부터 분리한 연골세포의 연속 계대배양을 통한 노화 과정에서 산화적 스트레스가 증가함을 관찰하였다. 그리고, 노화 유도한 연골세포는 세포내 총 glutathione (GSSG/GSH) 양과 항산화 효소 superoxide dismutase (SOD)와 heme oxygenase-1 (HO-1)의 발현이 증가하였다. 다음으로, 나이대별 쥐로부터 분리한 관절연골에서 항산화 인자의 발현을 분석하였다. 항산화 인자 glutathione의 양은 40주령에서 발현이 가장 높게 관찰되었으며 72주령에 다소 감소하였고, SOD와 HO-1의 발현은 나이대별로 현저히 증가되는 경향을 보였다. 이를 종합해 볼 때, 세포내 항산화 인자들은 과도한 양의 ROS에 반응하여 연골세포의 노화와 나이와 관련된 관절연골의 퇴화 과정에서 중요한 역할을 하는 것으로 보인다.

Cartilage diseases, such as rheumatoid arthritis (RA) and osteoarthritis (OA), are associated with the loss of chondrocytes and degradation of articular cartilage. Recent studies revealed that inflammatory reactive oxygen species (ROS) and age-related oxidative stress can affect chondrocyte activity and cartilage homeostasis. We investigated changes in the levels of intracellular antioxidants during cellular senescence of primary chondrocytes from rat articular cartilages. Cellular senescence was induced by serial subculture (passages 0, 2, 4, and 8) of chondrocytes and measured using specific senescence-associated ${\beta}$-galactosidase ($SA-{\beta}-gal$) staining. ROS production increased significantly in the senescent chondrocytes. In addition, total glutathione (GSSG/GSH) and superoxide dismutase (SOD) levels and heme oxygenase-1 (HO-1) expression increased in senescent chondrocytes induced by serial subculture. Analysis of changes in intracellular antioxidant levels in articular cartilage from rats of different ages (5, 25, 40, and 72 wk) revealed that total glutathione levels were highest after 40 wk and slightly decreased after 72 wk as compared with those after 25 wk. SOD and HO-1 expression levels increased in accordance with age. Based on these results, we conclude that intracellular antioxidants may be associated with cartilage protection against excessive oxidative stress in the process of chondrocyte senescence and age-related cartilage degeneration in an animal model.

키워드

참고문헌

  1. Bau, B., Gebhard, P. M., Haag, J., Knorr, T., Bartnik, E. and Aigner, T. 2002. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and vitro. Arthritis. Rheum. 46, 2648-2657. https://doi.org/10.1002/art.10531
  2. Borsiczky, B., Szabo, Z., Jaberansari, M. T., Mack, P. P. and Roth, E. 2003. Activated PMNs lead to oxidative stress on chondrocytes: a study of swine knees. Acta. Orthop. Scand. 74, 190-195. https://doi.org/10.1080/00016470310013941
  3. Cawston, T., Billington, C., Cleaver, C., Elliott, S., Hui, W., Koshy, P., Shingleton, B. and Rowan, A. 1999. The regulation of MMPs and TIMPs in cartilage turnover. Ann. NY Acad. Sci. 878, 120-129. https://doi.org/10.1111/j.1749-6632.1999.tb07678.x
  4. Clerigues, V., Guillen, M. I., Gomar, F. and Alcaraz, M. J. 2012. Haem oxygenase-1 counteracts the effects of interleukin-1${\beta}$ on inflammatory and senescence markers in cartilage-subchondral bone explants from osteoarthritic patients. Clin. Sci. (Lond) 122, 239-250. https://doi.org/10.1042/CS20100519
  5. Deahl, S. T. 2nd., Oberley, L. W., Oberley, T. D. and Elwell, J. H. 1992. Immunohistochemical identification of superoxide dismutases, catalase, and glutathione-S-transferases in rat femora. J. Bone Miner. Res. 7, 187-198. https://doi.org/10.1002/jbmr.5650070210
  6. DeLise, A. M., Fischer, L. and Tuan, R. S. 2000. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309-334. https://doi.org/10.1053/joca.1999.0306
  7. Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511. https://doi.org/10.1038/nchembio.607
  8. Falchuk, K. H., Goetzl, E. J. and Kulka, J. P. 1970. Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. Am. J. Med. 49, 223-231. https://doi.org/10.1016/S0002-9343(70)80078-X
  9. Fernandez, P., Guillen, M. I., Gomar, F. and Alcaraz, M. J. 2003. Expression of heme oxygenase-1 and regulation by cytokines in human osteoarthritic chondrocytes. Biochem. Pharmacol. 66, 2049-2052. https://doi.org/10.1016/S0006-2952(03)00543-4
  10. Goldring, M. B. and Goldring, S. R. 2007. Osteoarthritis. J. Cell. Physiol. 213, 626-634. https://doi.org/10.1002/jcp.21258
  11. Grimshaw, M. J. and Mason, R. M. 2000. Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage 8, 386-392. https://doi.org/10.1053/joca.1999.0314
  12. Guillen, M., Megias, J., Gomar, F. and Alcaraz, M. 2008. Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes. J. Pathol. 214, 515-522. https://doi.org/10.1002/path.2313
  13. Henrotin, Y., Kurz, B. and Aigner, T. 2005. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13, 643-654. https://doi.org/10.1016/j.joca.2005.04.002
  14. Henrotin, Y. and Kurz, B. 2007. Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets 8, 347-357. https://doi.org/10.2174/138945007779940151
  15. Ishitobi, H., Sanada, Y., Kato, Y., Ikuta, Y., Shibata, S., Yamasaki, S., Lotz, M. K., Matsubara, K., Miyaki, S. and Adachi, N. 2018. Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes. Eur. J. Pharmacol. 830, 1-8. https://doi.org/10.1016/j.ejphar.2018.04.018
  16. Jallali, N., Ridha, H., Thrasivoulou, C., Underwood, C., Butler, P. E. and Cowen, T. 2005. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage 13, 614-622. https://doi.org/10.1016/j.joca.2005.02.011
  17. Kim, K. M., Kim, J. M., Yoo, Y. H., Kim, J. I. and Park, Y. C. 2012. Cilostazol induces cellular senescence and confers resistance to etoposide-induced apoptosis in articular chondrocytes. Int. J. Mol. Med. 29, 619-624. https://doi.org/10.3892/ijmm.2012.892
  18. Kim, K. M., Song, J. D., Chung, H. T. and Park, Y. C. 2012. Protein kinase CK2 mediates peroxynitrite-induced heme oxygenase-1 expression in articular chondrocytes. Int. J. Mol. Med. 29, 1039-1044. https://doi.org/10.3892/ijmm.2012.949
  19. Lane, J. M., Brighton, C. T. and Menkowitz, B. J. 1977. Anaerobic and aerobic metabolism in articular cartilage. J. Rheumatol. 4, 334-342.
  20. Loeser, R. F. 2009. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 17, 971-979. https://doi.org/10.1016/j.joca.2009.03.002
  21. Mates, J. M., Perez-Gomez, C. and Nunez de Castro, I. 1999. Antioxidant enzymes and human diseases. Clin. Biochem. 32, 595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  22. Martin, J. A. and Buckwalter, J. A. 2002. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3, 257-264. https://doi.org/10.1023/A:1020185404126
  23. Martin, W. J., Herst, P. M., Chia, E. W. and Harper, J. L. 2009. Sesquiterpene dialdehydes inhibit MSU crystal-induced superoxide production by infiltrating neutrophils in an in vivo model of gouty inflammation. Free Radic. Biol. Med. 47, 616-621. https://doi.org/10.1016/j.freeradbiomed.2009.05.035
  24. McCulloch, K., Litherland, G. J. and Rai, T. S. 2017. Cellular senescence in osteoarthritis pathology. Aging Cell 16, 210-218. https://doi.org/10.1111/acel.12562
  25. Muir, H. 1995. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays 17, 1039-1048. https://doi.org/10.1002/bies.950171208
  26. Phillips, D. C., Dias, H. K., Kitas, G. D. and Griffiths, H. R. 2010. Aberrant reactive oxygen and nitrogen species generation in rheumatoid arthritis (RA): causes and consequences for immune function, cell survival, and therapeutic intervention. Antioxid. Redox Signal. 12, 743-785. https://doi.org/10.1089/ars.2009.2607
  27. Rajpurohit, R., Koch, C. J., Tao, Z., Teixeira, C. M. and Shapiro, M. 1996. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J. Cell. Physiol. 168, 424-432. https://doi.org/10.1002/(SICI)1097-4652(199608)168:2<424::AID-JCP21>3.0.CO;2-1
  28. Sandell, L. J., Xing, X., Franz, C., Davies, S., Chang, L. W. and Patra, D. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis Cartilage 16, 1560-1571. https://doi.org/10.1016/j.joca.2008.04.027
  29. Sasaki, M., Kajiya, H., Ozeki, S., Okabe, K. and Ikebe, T. 2014. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.). Biochem. Biophys. Res. Commun. 452, 622-628. https://doi.org/10.1016/j.bbrc.2014.08.123
  30. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. and Lowe, S. W. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  31. Stockwell, R. A. 1991. Morphometry of cytoplasmic components of mammalian articular chondrocytes and corneal keratocytes: species and zonal variations of mitochondria in relation to nutrition. J. Anat. 175, 251-261.
  32. Villalvilla, A., Gomez, R., Largo, R. and Herrero-Beaumont, G. 2013. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int. J. Mol. Sci. 14, 20793-20808. https://doi.org/10.3390/ijms141020793
  33. Yudoh, K., Nguyen, vT., Nakamura, H., Hongo-Masuko, K., Kato, T. and Nishioka, K. 2005. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res. Ther. 7, R380-391. https://doi.org/10.1186/ar1499
  34. Zwerina, J., Tzima, S., Hayer, S., Redlich, K., Hoffmann, O., Hanslik-Schnabel, B., Smolen, J. S., Kollias, G. and Schett, G. 2005. Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J. 19, 2011-2013. https://doi.org/10.1096/fj.05-4278fje