DOI QR코드

DOI QR Code

고지방식이로 유도된 비만 쥐의 골격근에서 유산소 운동 훈련 또는 레스베라트롤 투여가 미토콘드리아 생합성에 미치는 영향

The Effect of Aerobic Exercise Training Versus Resveratrol Supplementation on Mitochondrial Biogenesis in Skeletal Muscle of High-fat Diet-induced Obese Mice

  • 김경일 (충남대학교 스포츠과학과) ;
  • 안상민 (고려대학교 사회체육학과) ;
  • 박희근 (충남대학교 스포츠과학과) ;
  • 이왕록 (충남대학교 스포츠과학과)
  • Kim, Kyung-Il (Department of Sports Science, Chungnam National University) ;
  • An, Sang-Min (Department of Sport and Leisure Studies, Korea University) ;
  • Park, Hee-Geun (Department of Sports Science, Chungnam National University) ;
  • Lee, Wang-Lok (Department of Sports Science, Chungnam National University)
  • 투고 : 2019.06.12
  • 심사 : 2019.08.14
  • 발행 : 2019.08.30

초록

본 연구에서는 고지방식이로 유발된 비만 쥐의 골격근에서 유산소 운동과 레스베라트롤 투여가 미토콘드리아 생합성에 미치는 영향을 조사하였다. 4주령 C57BL/6의 수컷 쥐를 이용하여, 일반 식이 그룹(NC, n=10), 고지방식이 그룹(HR, n=10), 레스베라트롤 투여와 고지방식이 그룹(HRe, n=10), 유산소 운동 그룹(HE, n=10)으로 분류하였다. 유산소 운동은 16주 동안 40~60 min/day 동안 10-14m/min, 0% grade의 강도로 주당 4회 트레드밀 운동을 실시하였고, 레스베라트롤은 16주 동안 1일 1회, 주당 4회 체중 당 25 mg/kg을 투여하였다. COX-IV mRNA 발현은 NC와 HC 그룹 간에 유의한 차이가 있었으며(p<0.05), HE 그룹의 SIRT-3, $PGC-1{\alpha}$ 및 COX-IV mRNA 발현은 HC 및 HRe 그룹에 비해 유의하게 증가하였다(p<0.05). 또한, 오직 HE 그룹의 $PGC-1{\alpha}$ 및 COX-IV mRNA의 발현만이 HC 그룹에 비해 유의하게 증가하였다(p<0.05). 이상의 결과를 종합해보면, 고지방식이로 유발된 비만 쥐는 골격근에서 미토콘드리아 생합성 유전자 발현에 영향을 나타내지 않는 것으로 보인다. 하지만, 유산소 운동 훈련은 고지방식이로 유발된 비만 쥐의 골격근에서 미토콘드리아 생합성 유전자 발현을 증가시키는 것으로 나타났다. 이러한 연구 결과는 레스베라트롤 투여가 아닌 유산소 운동이 고지방식이로 유도된 쥐의 골격근에서 미토콘드리아 생합성에 긍정적인 영향을 미친다는 것을 시사한다.

The purpose of this study was to analyze the effects of aerobic exercise and resveratrol supplementation on mitochondrial biogenesis in skeletal muscle of high-fat diet-induced obese mice. In this study, 4-wk-old C57BL/6 male mice were divided into four groups, with 10 animals in each group: a normal diet group (NC), high-fat diet group (HC), high-fat diet group with resveratrol supplementation (HRe), and high-fat diet GROUP with exercise (HE). Aerobic exercise was performed on a treadmill for 40~60 min/d at 10~14 m/min, 0% grade, 4 d/wk for 16 wk. Resveratrol (25 mg/kg bodyweight) was administrated once a day, 4 d/wk for 16 wk. There was a significance difference in COX-IV mRNA expression in the NC group versus that in the HC group (p<0.05). The expression of the SIRT-3, PGC-1a, and COX-IV mRNA genes in the HE group increased significantly as compared with the expression of these genes in the HC and HRe groups (p<0.05). These results indicated that high- fat diet-induced obesity did not affect mitochondria biogenesis gene expression in skeletal muscle. In contrast, aerobic exercise training increased the expression of mitochondria biogenesis gene expression in skeletal muscle in high-fat diet-induced obese mice. These findings suggested that aerobic exercise but not resveratrol supplementation had a positive effect on mitochondrial biogenesis in skeletal muscle in high-fat diet-induced obese mice.

키워드

참고문헌

  1. Ahn, J., Cho, I., Kim, S., Kwon, D. and Ha, T. 2008. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J. Hepatol. 49, 1019-1028. https://doi.org/10.1016/j.jhep.2008.08.012
  2. Baur, J. A. 2010. Biochemical effects of SIRT1 activators. Biochim. Biophys. Acta. 1804, 1626-1634. https://doi.org/10.1016/j.bbapap.2009.10.025
  3. Borg, M. L., Omran, S. F., Weir, J., Meikle, P. J. and Watt, M. J. 2012. Consumption of a high fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J. Physiol. 590, 4377-4389. https://doi.org/10.1113/jphysiol.2012.233288
  4. Burgomaster, K. A., Cermak, N. M., Phillips, S. M., Benton, C. R., Bonen, A., and Gibala, M. J. 2007. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 1970-1976. https://doi.org/10.1152/ajpregu.00503.2006
  5. Canto, C., Jiang, L. Q., Deshmukh, A. S., Mataki, C., Coste, A., Lagouge, M., Zierath, J. R. and Auwerx, J. 2010. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219. https://doi.org/10.1016/j.cmet.2010.02.006
  6. Cartoni, R., Leger, B., Hock, M. B., Praz, M., Crettenand, A., Pich, S., Ziltener, J. L., Luthi, F., Deriaz, O. and Zorzano, A. 2005. Mitofusins 1/2 and ERR${\alpha}$ expression are increased in human skeletal muscle after physical exercise. J. Physiol. 567, 349-358. https://doi.org/10.1113/jphysiol.2005.092031
  7. Chabi, B., Ljubicic, V., Menzies, K. J., Huang, J. H., Saleem, A. and Hood, D. A. 2008. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7, 2-12. https://doi.org/10.1111/j.1474-9726.2007.00347.x
  8. Chalkiadaki, A. and Guarente, L. 2012. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180-188. https://doi.org/10.1016/j.cmet.2012.07.003
  9. Chang, C. C., Lin, K. Y., Peng, K. Y., Day, Y. J. and Hung, L. M. 2016. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr. J. 63, 169-178. https://doi.org/10.1507/endocrj.EJ15-0545
  10. Cobley, J. N., Bartlett, J., Kayani, A., Murray, S., Louhelainen, J., Donovan, T., Waldron, S., Gregson, W., Burniston, J. G. and Morton, J. P. 2012. PGC-1${\alpha}$ transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology 13, 621-631. https://doi.org/10.1007/s10522-012-9408-1
  11. Das, D. K., Mukherjee, S. and Ray, D. 2011. Erratum to: Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev. 16, 425-435. https://doi.org/10.1007/s10741-011-9234-6
  12. Fernandez, A. F. and Fraga, M. F. 2011. The effects of the dietary polyphenol resveratrol on human healthy aging and lifespan. Epigenetics 6, 870-874. https://doi.org/10.4161/epi.6.7.16499
  13. Geng, T., Li, P., Okutsu, M., Yin, X., Kwek, J., Zhang, M. and Yan, Z. 2009. PGC-1${\alpha}$ plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am. J. Physiol. Cell Physiol. 298, C572-C579.
  14. Greene, N. P., Fluckey, J. D., Lambert, B. S., Greene, E. S., Riechman, S. E. and Crouse, S. F. 2012. Regulators of blood lipids and lipoproteins? PPAR${\delta}$ and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. Am. J. Physiol. Endocrinol. Metab. 303, E1212-E1221. https://doi.org/10.1152/ajpendo.00309.2012
  15. Gurd, B. J., Holloway, G. P., Yoshida, Y. and Bonen, A. 2012. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphateactivated protein kinase - independent manner. Metabolism 61, 733-741. https://doi.org/10.1016/j.metabol.2011.09.016
  16. Hallows, W. C., Lee, S. and Denu, J. M. 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. PNAS. 103, 10230-10235. https://doi.org/10.1073/pnas.0604392103
  17. Handschin, C., Choi, C. S., Chin, S., Kim, S., Kawamori, D., Kurpad, A. J., Neubauer, N., Hu, J., Mootha, V. K. and Kim, Y. B. 2007. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1${\alpha}$ knockout mice reveals skeletal muscle-pancreatic ${\beta}$ cell crosstalk. J. Clin. Inves. 117, 3463-3474. https://doi.org/10.1172/JCI31785
  18. Handschin, C. and Spiegelman, B. M. 2006. Peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27, 728-375.
  19. Hirschey, M. D., Shimazu, T., Jing, E., Grueter, C. A., Collins, A. M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M. M. and Schwer, B. 2011. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177-190. https://doi.org/10.1016/j.molcel.2011.07.019
  20. Hokari, F., Kawasaki, E., Sakai, A., Koshinaka, K., Sakuma, K. and Kawanaka, K. 2010. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J. Appl. Physiol. 109, 332-340. https://doi.org/10.1152/japplphysiol.00335.2009
  21. Hood, D. A. 2009. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 465-472. https://doi.org/10.1139/H09-045
  22. Irrcher, I., Adhihetty, P. J., Sheehan, T., Joseph, A. M. and Hood, D. A. 2003. PPAR${\gamma}$ coactivator-1${\alpha}$ expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations. Am. J. Physiol. Cell Physiol. 284, C1669-C1677. https://doi.org/10.1152/ajpcell.00409.2002
  23. Jelenik, T. and Roden, M. 2013. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid. Redox Signal. 19, 258-268. https://doi.org/10.1089/ars.2012.4910
  24. Jeong, J. H., Park, H. G., Lee, Y. R. and Lee, W. L. 2015. Moderate exercise training is more effective than resveratrol supplementation for ameliorating lipid metabolic complication in skeletal muscle of high fat diet-induced obese mice. J. Exerc. Nutr. Biochem. 19, 131. https://doi.org/10.5717/jenb.2015.15062211
  25. Johnson, M. L., Robinson, M. M. and Nair, K. S. 2013. Skeletal muscle aging and the mitochondrion. Trends Endocrinol. Metab. 24, 247-256. https://doi.org/10.1016/j.tem.2012.12.003
  26. King, G. A., Fitzhugh, E., Bassett Jr, D., McLaughlin, J., Strath, S. J., Swartz, A. M. and Thompson, D. 2001. Relationship of leisure-time physical activity and occupational activity to the prevalence of obesity. Int. J. Obes. 25, 247-256
  27. Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., Fang, F. and Chang, Y. 2010. Sirtuin 3, a new target of PGC-1${\alpha}$, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5, e11707. https://doi.org/10.1371/journal.pone.0011707
  28. Kwon, S. M., Park, H. G., Jun, J. K. and Lee, W. L. 2014. Exercise, but not quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. J. Exerc. Nutr. Biochem. 18, 51. https://doi.org/10.5717/jenb.2014.18.1.51
  29. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P. and Elliott, P. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1${\alpha}$. Cell 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  30. Laker, R. C., Lillard, T. S., Okutsu, M., Zhang, M., Hoehn, K. L., Connelly, J. J. and Yan, Z. 2014. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1${\alpha}$ gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63, 1605-1611. https://doi.org/10.2337/db13-1614
  31. Lanza, I. R., Short, D. K., Short, K. R., Raghavakaimal, S., Basu, R., Joyner, M. J., McConnell, J. P. and Nair, K. S. 2008. Endurance exercise as a countermeasure for aging. Diabetes 57, 2933-2942. https://doi.org/10.2337/db08-0349
  32. Lee, Y. R., Pitriani, P., Park, H. G. and Lee, W. L. 2017. Resveratrol ameliorates high-fat-induced metabolic complications by changing the expression of inflammasome markers and macrophage M1 and M2 markers in obese mice. J. Life Sci. 27, 1462-1469. https://doi.org/10.5352/JLS.2017.27.12.1462
  33. Li, W., Park, H. G., Lee, Y. R., Jang, H. Y., Choo, S. H., Lee, Y. H., Gan, L., Jun, J. K., Lee, W. L. and Lee, S. K. 2012. Regular endurance exercise decreases blood pressure via enhancement of angiogenesis and VEGF expression in spontaneously hypertensive rats. J. Life Sci. 22, 665-670. https://doi.org/10.5352/JLS.2012.22.5.665
  34. Lin, J., Handschin, C. and Spiegelman, B. M. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370. https://doi.org/10.1016/j.cmet.2005.05.004
  35. Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, E. and Olson, E. N. 2002. Transcriptional co-activator PGC-1${\alpha}$ drives the formation of slow-twitch muscle fibres. Nature 418, 797. https://doi.org/10.1038/nature00904
  36. Lombard, D. B., Alt, F. W., Cheng, H. L., Bunkenborg, J., Streeper, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D. and Murphy, A. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol. 27, 8807-8814. https://doi.org/10.1128/MCB.01636-07
  37. Lopez-Lluch, G., Hunt, N., Jones, B., Zhu, M., Jamieson, H., Hilmer, S., Cascajo, M., Allard, J., Ingram, D. and Navas, P. d. 2006. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. PNAS. 103, 1768-1773. https://doi.org/10.1073/pnas.0510452103
  38. Lowell, B. B. and Shulman, G. I. 2005. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384-387. https://doi.org/10.1126/science.1104343
  39. Manach, C., Scalbert, A., Morand, C., Remesy, C. and Jimenez, L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727-747. https://doi.org/10.1093/ajcn/79.5.727
  40. Mensink, M., Hesselink, M., Russell, A., Schaart, G., Sels, J. and Schrauwen, P. 2007. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1${\alpha}$ and PPAR${\beta}$/${\delta}$ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int. J. Obes. 31, 1302. https://doi.org/10.1038/sj.ijo.0803567
  41. Miura, S., Tomitsuka, E., Kamei, Y., Yamazaki, T., Kai, Y., Tamura, M., Kita, K., Nishino, I. and Ezaki, O. 2006. Overexpression of peroxisome proliferator-activated receptor ${\gamma}$ co-activator-1${\alpha}$ leads to muscle atrophy with depletion of ATP. Am. J. Pathol. 169, 1129-1139. https://doi.org/10.2353/ajpath.2006.060034
  42. Mukherjee, S., Ray, D., Lekli, I., Bak, I., Tosaki, A. and Das, D. K. 2010. Effects of Longevinex (modified resveratrol) on cardioprotection and its mechanisms of action. Can J. Physiol. Pharmacol. 88, 1017-1025. https://doi.org/10.1139/Y10-082
  43. North, B. J. and Sinclair, D. A. 2007. Sirtuins: a conserved key unlocking AceCS activity. Trends Biochem. Sci. 32, 1-4. https://doi.org/10.1016/j.tibs.2006.11.002
  44. Olesen, J., Kiilerich, K. and Pilegaard, H. 2010. PGC-1${\alpha}$-mediated adaptations in skeletal muscle. Pflugers Arch. 460, 153-162. https://doi.org/10.1007/s00424-010-0834-0
  45. Palacios, O. M., Carmona, J. J., Michan, S., Chen, K. Y., Manabe, Y., Ward Iii, J. L., Goodyear, L. J. and Tong, Q. 2009. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1${\alpha}$ in skeletal muscle. Aging (Albany NY) 1, 771-783. https://doi.org/10.18632/aging.100075
  46. Park, H. G., Lee, Y. R., Jun, J. K. and Lee, W. L. 2014. Exercise training is more effective than resveratrol supplementation on alleviation of inflammation in peritoneal macrophages of high fat diet mice. J. Exerc. Nutr. Biochem. 18, 79. https://doi.org/10.5717/jenb.2014.18.1.79
  47. Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M. and Saccone, R. 2003. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. PNAS. 100, 8466-8471. https://doi.org/10.1073/pnas.1032913100
  48. Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G. and Teodoro, J. S. 2012. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690. https://doi.org/10.1016/j.cmet.2012.04.003
  49. Samocha Bonet, D., Dixit, V. D., Kahn, C. R., Leibel, R. L., Lin, X., Nieuwdorp, M., Pietilainen, K. H., Rabasa-Lhoret, R., Roden, M., Scherer, P. E., Klein, S. and Ravussin, E. 2014. Metabolically healthy and unhealthy obese-the 2013 S tock C onference report. Obes. Rev. 15, 697-708. https://doi.org/10.1111/obr.12199
  50. Scarpulla, R. C. 2006. Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673-683. https://doi.org/10.1002/jcb.20743
  51. Schefer, V. and Talan, M. I. 1996. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387-392. https://doi.org/10.1016/0531-5565(95)02032-2
  52. Shi, T., Wang, F., Stieren, E. and Tong, Q. 2005. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560-13567. https://doi.org/10.1074/jbc.M414670200
  53. Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Rizza, R. A., Coenen-Schimke, J. M. and Nair, K. S. 2003. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52, 1888-1896. https://doi.org/10.2337/diabetes.52.8.1888
  54. Um, J. H., Park, S. J., Kang, H., Yang, S., Foretz, M., McBurney, M. W., Kim, M. K., Viollet, B. and Chung, J. H. 2010. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59, 554-563. https://doi.org/10.2337/db09-0482
  55. Ungvari, Z., Sonntag, W. E., de Cabo, R., Baur, J. A. and Csiszar, A. 2011. Mitochondrial protection by resveratrol. Exerc. Sport. Sci. Rev. 39, 128-132. https://doi.org/10.1097/JES.0b013e3182141f80
  56. Wende, A. R., Schaeffer, P. J., Parker, G. J., Zechner, C., Han, D.-H., Chen, M. M., Hancock, C. R., Lehman, J. J., Huss, J. M. and McClain, D. A. 2007. A role for the transcriptional coactivator PGC-1${\alpha}$ in muscle refueling. J. Biol. Chem. 282, 36642-36651. https://doi.org/10.1074/jbc.M707006200
  57. Wilson, F. H., Hariri, A., Farhi, A., Zhao, H., Petersen, K. F., Toka, H. R., Nelson-Williams, C., Raja, K. M., Kashgarian, M. and Shulman, G. I. 2004. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306, 1190-1194. https://doi.org/10.1126/science.1102521