APPROXIMATE LINEAR MAPPING OF DERIVATION-TYPE ON BANACH *-ALGEBRA

Ick-Soon Chang

Abstract

We consider additive mappings similar to derivations on Banach *-algebras and we will first study the conditions for such additive mappings on Banach $*$-algebras. Then we prove some theorems concerning approximate linear mappings of derivationtype on Banach $*$-algebras. As an application, approximate linear mappings of derivation-type on C^{*}-algebra are characterized.

1. Introduction

The stability problem for derivations on Banach algebra was considered by authors in $[3,14]$. Bourgin proved the superstability of homomorphism in [4]. In particular, Badora dealt with the stability of Bourgin-type for derivations in [3].

The study of stability problem has originally been formulated by Ulam [16]: under what condition does there exist a homomorphism near an approximate homomorphism? Hyers [8] had answered affirmatively the question of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately additive mappings was given by Aoki [1] and for approximately linear mappings was presented by Rassias [15].

Since then, many interesting results of the stability problems to a number of functional equations and inequalities (or involving derivations) have been investigated (refer [11] and [12]). The reader is referred to the book [9] for many information of stability problem with a large variety of applications.

On the other hand, many authors (see, for example, [5]) have studied the additive mappings δ_{1}, δ_{2} on $*$-rings \mathcal{R} similar to derivations and

Received February 07, 2019; Accepted March 31, 2019.
2010 Mathematics Subject Classification: 16N60, 39B72, 39B82, 46H40, 46L57.
Key words and phrases: functional inequality, addtive mapping, Banach *-algebra, stability

Jordan derivations on $*$-rings. These mappings δ_{1}, δ_{2} satisfy

$$
\delta_{1}(x y)=x \delta_{1}(y)+\delta_{1}(x) y^{*} \text { for all } x, y \in \mathcal{R}
$$

and

$$
\delta_{2}\left(x^{2}\right)=x \delta_{2}(x)+\delta_{2}(x) x^{*} \text { for all } x \in \mathcal{R} .
$$

The aim of this work is to establish some theorems for approximate linear mappings of derivation-type on Banach $*$-algebra related to the additive mappings mentioned in the above paragraph. Furthermore, the division of this work is devoted to the applications for such approximate linear mappings of derivation-type on C^{*}-algebra.

2. Main results

We first take into account the additive functional inequality which is needed in this work.

Lemma 2.1. Let δ be a mapping from a vector space \mathcal{A} to a normed space \mathcal{B}. Then it satisfies the inequality

$$
\begin{equation*}
\|\delta(x)-\delta(y)-2 \delta(z)\| \leq\|\delta(x-y-2 z)\| \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$ if and only if it is an additive mapping.
Proof. Suppose that a mapping δ satisfies the inequality (2.1). Letting $x=y=z=0$ in (2.1), we get $\delta(0)=0$. And by replacing x, y and z with $x+y, x-y$ and y, respectively, in (2.1), we obtain

$$
\begin{equation*}
\delta(x+y)-\delta(x-y)=2 \delta(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Also, by letting $x+y=u$ and $x-y=v$ in (2.2), we get

$$
\begin{equation*}
\delta(u)-\delta(v)=2 \delta\left(\frac{u-v}{2}\right) \tag{2.3}
\end{equation*}
$$

for all $u, v \in \mathcal{A}$. Replacing v by $-u$ in (2.3), we have

$$
\begin{equation*}
\delta(-u)=-\delta(u) \tag{2.4}
\end{equation*}
$$

for all $u \in \mathcal{A}$. Setting $u=2 y$ and $v=0$ in (2.3), we arrive at $\delta(2 y)=$ $2 \delta(y)$. Setting $y=\frac{x}{2}$ in the last expression, we obtain $\delta\left(\frac{x}{2}\right)=\frac{1}{2} \delta(x)$. So the relation (2.3) can be written

$$
\begin{equation*}
\delta(u)-\delta(v)=\delta(u-v) \tag{2.5}
\end{equation*}
$$

for all $u, v \in \mathcal{A}$. Letting $u=x$ and $v=-y$ in (2.5) and using (2.4), we yield that

$$
\delta(x+y)=\delta(x)+\delta(y)
$$

for all $x, y \in \mathcal{A}$, so that δ is additive.
Conversely, if δ is an additive mapping, then it is easily proved that δ satisfies the inequality (2.1).

Now we assume that $\mathbb{T}_{\varepsilon}=\left\{e^{i \theta}: 0 \leq \theta \leq \varepsilon\right\}$. For any elements x, y in *-algebra \mathcal{A}, the symbol $[x, y]$ will denote the commutator $x y-y x$ and let $\operatorname{Sym}(\mathcal{A})$ be the set of self-adjoint elements in \mathcal{A}.

Theorem 2.2. Let \mathcal{A} be a Banach $*$-algebra. Assume that mappings $\Phi: \mathcal{A}^{3} \rightarrow[0, \infty)$ and $\varphi: \mathcal{A}^{2} \rightarrow[0, \infty)$ satisfy the assumptions

1. $\sum_{j=0}^{\infty} \frac{1}{2^{j}} \Phi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty \quad(x, y, z \in \mathcal{A})$,
2. $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, y\right)=0 \quad(x, y \in \mathcal{A})$.

Suppose that $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping subject to

$$
\begin{equation*}
\|\delta(t x)-t \delta(y)-2 \delta(z)\| \leq\|\delta(x-y-2 z)\|+\Phi(x, y, z) \tag{2.6}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$ and all $t \in \mathbb{T}_{\varepsilon}$ with

$$
\begin{equation*}
\left\|\delta(x y)-x \delta(y)-\delta(x) y^{*}\right\| \leq \varphi(x, y) \tag{2.7}
\end{equation*}
$$

for all $x \in \operatorname{Sym}(\mathcal{A})$ and $y \in \mathcal{A}$. Then there exists a unique linear mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\mathcal{L}(x y)=x \mathcal{L}(y)+\mathcal{L}(x) y^{*} \text { for all } x, y \in \mathcal{A} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathcal{L}(x)-\delta(x)\| \leq \sigma(x) \text { for all } x \in \mathcal{A} \tag{2.9}
\end{equation*}
$$

where

$$
\sigma(x)=\sum_{j=0}^{\infty}\left[\frac{1}{2^{j+1}} \Phi\left(2^{j+1} x, 0,2^{j} x\right)\right]+2 \Phi(0,0,0)
$$

In this case, the mapping \mathcal{L} satisfies the identity

$$
\begin{equation*}
\mathcal{L}(x)[y, z]=0 \tag{2.10}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$.
Proof. We first consider $t=1$ in (2.6). Then we have

$$
\begin{equation*}
\|\delta(x)-\delta(y)-2 \delta(z)\| \leq\|\delta(x-y-2 z)\|+\Phi(x, y, z) \tag{2.11}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$. By letting $x=y=z=0$ in (2.11), we get $\|\delta(0)\| \leq$ $\Phi(0,0,0)$. Setting $x=x+y, y=x-y$ and $z=y$ in (2.11) yield
(2.12) $\|\delta(x+y)-\delta(x-y)-2 \delta(y)\| \leq \Phi(x+y, x-y, y)+\Phi(0,0,0)$ for all $x, y \in \mathcal{A}$. Putting $y=x$ in (2.12) and dividing by 2 , we arrive at

$$
\begin{equation*}
\left\|\delta(x)-\frac{\delta(2 x)}{2}\right\| \leq \frac{1}{2} \Phi(2 x, 0, x)+\Phi(0,0,0) \tag{2.13}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Substituting $2^{n} x$ for x in (2.13) and dividing by 2^{n}, we obtain

$$
\left\|\frac{\delta\left(2^{n} x\right)}{2^{n}}-\frac{\delta\left(2^{n+1} x\right)}{2^{n+1}}\right\| \leq \frac{1}{2^{n+1}} \Phi\left(2^{n+1} x, 0,2^{n} x\right)+\frac{1}{2^{n}} \Phi(0,0,0)
$$

which implies that

$$
\begin{align*}
\left\|\frac{\delta\left(2^{n} x\right)}{2^{n}}-\frac{\delta\left(2^{m} x\right)}{2^{m}}\right\| & \leq \sum_{j=m}^{n-1}\left\|\frac{\delta\left(2^{j} x\right)}{2^{j}}-\frac{\delta\left(2^{j+1} x\right)}{2^{j+1}}\right\| \tag{2.14}\\
& \leq \sum_{j=m}^{n-1}\left[\frac{1}{2^{j+1}} \Phi\left(2^{j+1} x, 0,2^{j} x\right)+\frac{1}{2^{j}} \Phi(0,0,0)\right]
\end{align*}
$$

for all $x \in \mathcal{A}$ and all nonnegative integers m, n with $n>m$. This means that $\left\{\frac{\delta\left(2^{n} x\right)}{2^{n}}\right\}$ is a Cauchy sequence. Hence the sequence $\left\{\frac{\delta\left(2^{n} x\right)}{2^{n}}\right\}$ converges. So one can define a mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\begin{equation*}
\mathcal{L}(x)=\lim _{n \rightarrow \infty} \frac{\delta\left(2^{n} x\right)}{2^{n}} \tag{2.15}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Letting $m=0$ and $n \rightarrow \infty$ in (2.14), we arrive at (2.9).
Now we claim that the mapping \mathcal{L} is linear. By (2.11), one notes that

$$
\begin{aligned}
& \|\mathcal{L}(x)-\mathcal{L}(y)-2 \mathcal{L}(z)\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|\delta\left(2^{n} x\right)-\delta\left(2^{n} y\right)-2 \delta\left(2^{n} z\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\left\|\delta\left(2^{n}(x-y-2 z)\right)\right\|+\Phi\left(2^{n} x, 2^{n} y, 2^{n} z\right)\right] \\
& =\|\mathcal{L}(x-y-2 z)\|
\end{aligned}
$$

for all $x, y, z \in \mathcal{A}$. According to Lemma 2.1, the mapping \mathcal{L} is additive. Replacing x, y and z with $x+y, x-y$ and y, respectively, in (2.6), we have
(2.16) $\|\delta(t(x+y))-t \delta(x-y)-2 \delta(y)\| \leq \Phi(x+y, x-y, y)+\Phi(0,0,0)$
for all $x, y \in \mathcal{A}$ and all $t \in \mathbb{T}_{\varepsilon}$. Putting $y=0$ in (2.16), we have

$$
\|\delta(t x)-t \delta(x)\| \leq \Phi(x, x, 0)+3 \Phi(0,0,0)
$$

for all $x \in \mathcal{A}$ and all $t \in \mathbb{T}_{\varepsilon}$, which gives that

$$
\begin{aligned}
\|\mathcal{L}(t x)-t \mathcal{L}(x)\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|\delta\left(t \cdot 2^{n} x\right)-t \delta\left(2^{n} x\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\Phi\left(2^{n} x, 2^{n} x, 0\right)+3 \Phi(0,0,0)\right]=0
\end{aligned}
$$

That is, we conclude that $\mathcal{L}(t x)=t \mathcal{L}(x)$ for all $x \in \mathcal{A}$ and all $t \in \mathbb{T}_{\varepsilon}$. On account of Lemma in [7], we know that \mathcal{L} is a linear.

Next we show that \mathcal{L} satisfies the equation (2.8). It is easy to show that if $x \in \operatorname{Sym}(\mathcal{A})$, then $2^{n} x \in \operatorname{Sym}(\mathcal{A})$. We note from (2.7) that

$$
\begin{aligned}
\left\|\mathcal{L}(x y)-x \delta(y)-\mathcal{L}(x) y^{*}\right\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|\delta\left(2^{n} x y\right)-2^{n} x \delta(y)-\delta\left(2^{n} x\right) y^{*}\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, y\right)=0
\end{aligned}
$$

for all $x \in \operatorname{Sym}(\mathcal{A})$ and $y \in \mathcal{A}$. Thus we get

$$
\mathcal{L}(x y)=x \delta(y)+\mathcal{L}(x) y^{*} \text { for all } x \in \operatorname{Sym}(\mathcal{A}) \text { and } y \in \mathcal{A}
$$

Note that for elements $x \in \mathcal{A}$, we can write $x=x_{1}+i x_{2}$, where $x_{1}:=$ $\frac{x+x^{*}}{2}$ and $x_{2}:=\frac{x-x^{*}}{2 i}$ are self-adjoint. Thus we see that

$$
\begin{aligned}
\mathcal{L}(x y) & =\mathcal{L}\left(\left(x_{1}+i x_{2}\right) y\right)=\mathcal{L}\left(x_{1} y\right)+i \mathcal{L}\left(x_{2} y\right) \\
& =\left(x_{1} \delta(y)+\mathcal{L}\left(x_{1}\right) y^{*}\right)+i\left(x_{2} \delta(y)+\mathcal{L}\left(x_{2}\right) y^{*}\right) \\
& =\left(x_{1}+i x_{2}\right) \delta(y)+\mathcal{L}\left(x_{1}+i x_{2}\right) y^{*} \\
& =x \delta(y)+\mathcal{L}(x) y^{*}
\end{aligned}
$$

for all $x, y \in \mathcal{A}$. The equation guarantees that

$$
2^{n} x \delta(y)+2^{n} \mathcal{L}(x) y^{*}=2^{n} \mathcal{L}(x y)=\mathcal{L}\left(x \cdot 2^{n} y\right)=x \delta\left(2^{n} y\right)+2^{n} \mathcal{L}(x) y^{*}
$$

for all $x, y \in \mathcal{A}$, which implies that $x \delta(y)=x \frac{\delta\left(2^{n} y\right)}{2^{n}}$. So, by (2.15), we have the identity (2.8).

To show uniqueness of \mathcal{L}, let us assume that $T: \mathcal{A} \rightarrow \mathcal{A}$ is another linear mapping satisfying (2.8) and (2.9). Then we have by (2.9)

$$
\begin{aligned}
\|\mathcal{L}(x)-T(x)\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|\mathcal{L}\left(2^{n} x\right)-T\left(2^{n} x\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\left\|\mathcal{L}\left(2^{n} x\right)-\delta\left(2^{n} x\right)\right\|+\left\|\delta\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|\right] \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n-1}} \sigma\left(2^{n} x\right)=0
\end{aligned}
$$

for all $x \in \mathcal{A}$, which means that $\mathcal{L}=T$.
On the other hand, in view of (2.8), observe that

$$
\begin{aligned}
x y \mathcal{L}(z)+x \mathcal{L}(y) z^{*}+\mathcal{L}(x) y^{*} z^{*} & =x y \mathcal{L}(z)+\mathcal{L}(x y) z^{*} \\
& =\mathcal{L}(x y \cdot z)=\mathcal{L}(x \cdot y z) \\
& =x \mathcal{L}(y z)+\mathcal{L}(x)(y z)^{*} \\
& =x y \mathcal{L}(z)+x \mathcal{L}(y) z^{*}+\mathcal{L}(x) z^{*} y^{*}
\end{aligned}
$$

This implies that $\mathcal{L}(x)\left[y^{*}, z^{*}\right]=0$ for all $x, y, z \in \mathcal{A}$. Replacing y by y^{*} and z by z^{*} in the previous relation, we get the identity (2.10), which completes the proof.

Theorem 2.3. Let \mathcal{A} be a Banach *-algebra. Assume that mappings $\Phi: \mathcal{A}^{3} \rightarrow[0, \infty)$ and $\varphi: \mathcal{A}^{2} \rightarrow[0, \infty)$ satisfy the assumptions

1. $\rho(x)=\sum_{j=0}^{\infty} 2^{j} \Phi\left(\frac{x}{2^{j}}, 0, \frac{x}{2^{j+1}}\right)<\infty \quad(x \in \mathcal{A})$,
2. $\lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{2^{n}}, y\right)=0 \quad(x, y \in \mathcal{A})$.

Suppose that $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping subject to the inequalities (2.6) and (2.7). Then there exists a unique linear mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ with the identity (2.8) and

$$
\begin{equation*}
\|\mathcal{L}(x)-\delta(x)\| \leq \rho(x) \tag{2.17}
\end{equation*}
$$

for all $x \in \mathcal{A}$. In this case, the mapping \mathcal{L} satisfies the relation (2.10).
Proof. Letting $x=y=z=0$ in (2.11), we get $\|\delta(0)\| \leq \Phi(0,0,0)$. By assumption of Φ, we should have $\Phi(0,0,0)=0$. Thus $\delta(0)=0$. Replacing x, y and z with $x+y, x-y$ and y, respectively, in (2.11), we arrive at

$$
\|\delta(x+y)-\delta(x-y)-2 \delta(y)\| \leq \Phi(x+y, x-y, y)
$$

for all $x, y \in \mathcal{A}$. Letting $x=\frac{u}{2}, y=\frac{u}{2}$ in the last expression, we get

$$
\left\|\delta(u)-2 \delta\left(\frac{u}{2}\right)\right\| \leq \Phi\left(u, 0, \frac{u}{2}\right)
$$

for all $u \in \mathcal{A}$.
The remainder of the proof can be carried out similarly as the corresponding part of Theorem 2.2.

3. Applications

In this section, we write the unit element by e.
Theorem 3.1. If \mathcal{A} is either a semiprime Banach $*$-algebra or a unital Banach *-algebra in Theorem 2.2 (resp, Theorem 2.3), then δ is a linear mapping with relations (2.8) and (2.10). In this case \mathcal{A} is semiprime, δ is a central mapping.

Proof. It follows by Theorem 2.2 (resp, Theorem 2.3) that there exists a unique linear mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ with properties (2.8) and (2.10). In particular, considering the proof of Theorem 2.2 (resp, Theorem 2.3), we see that $x\{\delta(y)-\mathcal{L}(y)\}=0$ for all $x, y \in \mathcal{A}$.

If \mathcal{A} is unital, set $x=e$. Then $\delta=\mathcal{L}$.

If \mathcal{A} is nonunital, then $\delta(y)-\mathcal{L}(y)$ lies in the right annihilator $\operatorname{ran}(\mathcal{A})$ of \mathcal{A}. If \mathcal{A} is semiprime, then $\operatorname{ran}(\mathcal{A})=\{0\}$, so that $\delta=\mathcal{L}$.

Furthermore, replacing y by $y \delta(x)$ in (2.10) and using it, we have

$$
\begin{equation*}
\delta(x) y[\delta(x), z]=0 \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$. Letting y by $z y$ in (3.1), we get $\delta(x) z y[\delta(x), z]=$ 0 . Left multiplication in (3.1) by z, we arrive at $z \delta(x) y[\delta(x), z]=0$. Combining the last two expressions, we obtain $[\delta(x), z] y[\delta(x), z]=0$. The semiprimeness of \mathcal{A} implies that $[\delta(x), z]=0$ for all $x, z \in \mathcal{A}$. Therefore $\delta(x) \in Z(\mathcal{A})$ for all $x \in \mathcal{A}$. This shows that δ maps \mathcal{A} into its center $Z(\mathcal{A})$, which concludes the proof.

Corollary 3.2. If \mathcal{A} is a C^{*}-algebra in Theorem 2.2 (resp, Theorem 2.3), then δ is a commuting linear mapping.

Proof. Since a C^{*}-algebra is semiprime [2], we have from Theorem 3.1 that the linear mapping δ satisfies the condition $[\delta(x), x]=0$ for all $x \in \mathcal{A}$. Thereby the proof is ended.

Theorem 3.3. If \mathcal{A} is a noncommutative prime Banach $*$-algebra in Theorem 2.2 (resp, Theorem 2.3), then δ is identically zero.

Proof. Note that a prime algebra is semiprime. According to Theorem 3.1, δ is a linear mapping with relations (2.8) and (2.10).

Since (2.10) holds and \mathcal{A} is noncommutative, choose z that does not belong to the center of \mathcal{A}. Then it follows from [5, Lemma 1$]$ that δ is identically zero, which ends the proof.

Theorem 3.4. If \mathcal{A} is a semisimple Banach *-algebra in Theorem 2.2 (resp, Theorem 2.3), then δ is continuous linear mapping.

Proof. Observe that a semisimple algebra is semiprime. In view of Theorem 3.1, we see that δ is a linear mapping with (2.8).

So the mapping δ satisfies the equation

$$
\begin{equation*}
\delta\left(x^{2}\right)=x \delta(x)+\delta(x) x^{*} \text { for all } x \in \mathcal{A} . \tag{3.2}
\end{equation*}
$$

Since \mathcal{A} is a semisimple, we have by [6, Corollarly 2.3] that δ is continuous, which completes the proof.

It is well known that any primitive C^{*}-algebra is prime [13]. Then the previous theorem has the same result for a noncommutative primitive C^{*}-algebra.

Now we denote by $U(A)$ the set of all unitary elements in a unital C^{*}-algebra \mathcal{A}.

Theorem 3.5. Let \mathcal{A} be a unital C^{*}-algebra. Assume that mappings $\Phi: \mathcal{A}^{3} \rightarrow[0, \infty)$ and $\varphi: \mathcal{A}^{2} \rightarrow[0, \infty)$ satisfy the assumptions

1. $\sum_{j=0}^{\infty} \frac{1}{2^{j}} \Phi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty \quad(x, y, z \in \mathcal{A})$,
2. $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(x, 2^{n} y\right)=0 \quad(x, y \in \mathcal{A})$.

Suppose that $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping subject to (2.6) with

$$
\begin{equation*}
\left\|\delta(x y)-x \delta(y)-\delta(s x) y^{*}\right\| \leq \varphi(x, y) \tag{3.3}
\end{equation*}
$$

for all $x \in U(A), y \in \mathcal{A}$ and $s \in \mathbb{R}$. Then there exists a unique linear mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying (2.8) and (2.9). Moreover, the mapping \mathcal{L} satisfies the identity (2.10).

Proof. As in the proof of Theorem 2.2, we obtain

$$
\begin{equation*}
\mathcal{L}(x y)=x \mathcal{L}(y)+\delta(s x) y^{*} \text { for all } x \in U(\mathcal{A}), y \in \mathcal{A} \text { and } s \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

We set $x=y=e$ in (3.4) and then $\delta(s e)=0$ for all $s \in \mathbb{R}$. In view of (2.15), we see that $\mathcal{L}(e)=0$.

Considering $s=1$ in (3.4), we have

$$
\begin{equation*}
\mathcal{L}(x y)=x \mathcal{L}(y)+\delta(x) y^{*} \text { for all } x \in U(\mathcal{A}) \text { and } y \in \mathcal{A} . \tag{3.5}
\end{equation*}
$$

Setting $y=e$ in (3.5) yields $\mathcal{L}(x)=\delta(x)$ for all $x \in U(\mathcal{A})$. Since \mathcal{L} is linear and \mathcal{A} is the linear span of its unitary elements [10], i.e., $x=$ $\sum_{j=1}^{m} \lambda_{j} v_{j}$, where $\lambda_{j} \in \mathbb{C}$ and $v_{j} \in U(\mathcal{A})$, we have from (3.5)

$$
\begin{aligned}
\mathcal{L}(x y) & =\sum_{j=1}^{m} \lambda_{j} \mathcal{L}\left(v_{j} y\right)=\sum_{j=1}^{m} \lambda_{j}\left(v_{j} \mathcal{L}(y)+\delta\left(v_{j}\right) y^{*}\right) \\
& =\sum_{j=1}^{m} \lambda_{j} v_{j} \cdot \mathcal{L}(y)+\sum_{j=1}^{m} \lambda_{j} \mathcal{L}\left(v_{j}\right) y^{*} \\
& =x \mathcal{L}(y)+\mathcal{L}\left(\sum_{j=1}^{m} \lambda_{j} v_{j}\right) y^{*}=x \mathcal{L}(y)+\mathcal{L}(x) y^{*}
\end{aligned}
$$

for all $x, y \in \mathcal{A}$. This completes the proof.
We also have the following conclusion by using the same approach as in the proof of Theorem 3.5.

Theorem 3.6. Let \mathcal{A} be a unital C^{*}-algebra. Assume that mappings $\Phi: \mathcal{A}^{3} \rightarrow[0, \infty)$ and $\varphi: \mathcal{A}^{2} \rightarrow[0, \infty)$ satisfy the assumptions

1. $\rho(x)=\sum_{j=0}^{\infty} 2^{j} \Phi\left(\frac{x}{2^{j}}, 0, \frac{x}{2^{j+1}}\right)<\infty \quad(x \in \mathcal{A})$,
2. $\lim _{n \rightarrow \infty} 2^{n} \varphi\left(x, \frac{y}{2^{n}}\right)=0 \quad(x, y \in \mathcal{A})$.

Suppose that $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping subjected to the inequalities (2.6) and (3.3). Then there exists a unique linear mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ with the identity (2.8) and the inequality (2.17). Moreover, the mapping \mathcal{L} satisfies the relation (2.10).

Here we suppose that $S=\{1, i\}$, where $i \in \mathbb{C}$. The below theorems hold for a noncommutative primitive unital C^{*}-algebra.

Theorem 3.7. Let \mathcal{A} be a noncommutative prime unital Banach *algebra. Assume that mappings $\Phi: \mathcal{A}^{3} \rightarrow[0, \infty)$ and $\varphi: \mathcal{A}^{2} \rightarrow[0, \infty)$ satisfy the assumptions of Theorem 2.2. Suppose that $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping subjected to

$$
\begin{equation*}
\|\delta(t x)-t \delta(y)-2 \delta(z)\| \leq\|\delta(x-y-2 z)\|+\Phi(x, y, z) \tag{3.6}
\end{equation*}
$$

for all $x, y, z \in \mathcal{A}$ and $t \in S$ with

$$
\begin{equation*}
\left\|\delta(x y+y x)-x \delta(y)-\delta(x) y^{*}-y \delta(x)-\delta(y) x^{*}\right\| \leq \varphi(x, y) \tag{3.7}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Then δ is a linear mapping with (3.2).
Proof. We first let $t=1$ in (3.6). By applying the same method as in the proof of Theorem 2.2, we find that there exists a unique additive mapping $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying (2.9) and (2.15). Secondly, we take into account $t=i$ in (3.6). Employing the same fashion as in the proof of Theorem 2.2, we see that $\mathcal{L}(i x)=i \mathcal{L}(x)$ for all $x \in \mathcal{A}$ and $i \in \mathbb{C}$.

Now we prove that δ satisfies the equation (3.2). We have by (3.7) that

$$
\begin{aligned}
& \left\|\mathcal{L}(x y+y x)-x \delta(y)-\mathcal{L}(x) y^{*}-y \mathcal{L}(x)-\delta(y) x^{*}\right\| \\
& =\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \| \delta\left(2^{n}(x y+y x)\right)-2^{n} x \delta(y)-\delta\left(2^{n} x\right) y^{*}-y \delta\left(2^{n} x\right) \\
& -2^{n} \delta(y) x^{*} \| \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, y\right)=0
\end{aligned}
$$

which means that

$$
\begin{equation*}
\mathcal{L}(x y+y x)=x \delta(y)+\mathcal{L}(x) y^{*}+y \mathcal{L}(x)+\delta(y) x^{*} \text { for all } x, y \in \mathcal{A} \tag{3.8}
\end{equation*}
$$

This leads to

$$
\begin{aligned}
& x \delta\left(2^{n} y\right)+2^{n} \mathcal{L}(x) y^{*}+2^{n} y \mathcal{L}(x)+\delta\left(2^{n} y\right) x^{*}=\mathcal{L}\left(x \cdot 2^{n} y+2^{n} y \cdot x\right) \\
& =2^{n} \mathcal{L}(x y+y x)=2^{n}\left(x \delta(y)+\mathcal{L}(x) y^{*}+y \mathcal{L}(x)+\delta(y) x^{*}\right)
\end{aligned}
$$

for all $x, y \in \mathcal{A}$, which implies that

$$
x \frac{\delta\left(2^{n} y\right)}{2^{n}}+\frac{\delta\left(2^{n} y\right)}{2^{n}} x^{*}=x \delta(y)+\delta(y) x^{*}
$$

It follows from (2.15) that

$$
x \mathcal{L}(y)+\mathcal{L}(y) x^{*}=x \delta(y)+\delta(y) x^{*}
$$

for all $x, y \in \mathcal{A}$. Setting $x=e$ in the last expression, we get $\mathcal{L}=\delta$. So the property (3.8) is as follows:

$$
\begin{equation*}
\delta(x y+y x)=x \delta(y)+\delta(x) y^{*}+y \delta(x)+\delta(y) x^{*} \tag{3.9}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$. Considering $y=x$ in (3.9), we see that δ satisfies the equation (3.2).

It remains to show that δ is a linear mapping. Now replacing y by se in (3.9), we get

$$
\begin{equation*}
2 \delta(s x)=x \delta(s e)+2 s \delta(x)+\delta(s e) x^{*} \tag{3.10}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $s \in \mathbb{R}$. On the other hand, we note from [5, Theorem 2] that $\delta(s e)=0$. So we have by (3.10) that $\delta(s x)=s \delta(x)$ for all $x \in \mathcal{A}$ and $s \in \mathbb{R}$. In particular, we know that $\delta(i x)=i \delta(x)$ for all $x \in \mathcal{A}$ and $i \in \mathbb{C}$. Hence we yield that

$$
\delta(\lambda x)=\delta\left(\left(s_{1}+s_{2} i\right) x\right)=s_{1} \delta(x)+s_{2} i \delta(x)=\left(s_{1}+s_{2} i\right) \delta(x)=\lambda \delta(x)
$$

for all $x \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. Thus δ is linear mapping and so the theorem is proved.

As in the proof of Theorem 3.7, we arrive at the following.
Theorem 3.8. Let \mathcal{A} be a noncommutative prime unital Banach *algebra. Assume that mappings $\Phi: \mathcal{A}^{3} \rightarrow[0, \infty)$ and $\varphi: \mathcal{A}^{2} \rightarrow[0, \infty)$ satisfy the assumptions of Theorem 2.3. Suppose that $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping subject to the conditions (3.6) and (3.7). Then δ is a linear mapping satisfying (3.2).

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, 64-66 (1950).
[2] P. Ara and M. Mathieu, Local Multipliers of C^{*}-Algebras, Springer Monograph in Mathematics, Springer-Verlag, London, 2003.
[3] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), 167-173.
[4] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
[5] M. Breŝar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185.
[6] M. Breŝar and B. Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (1992), 163-171.
[7] M. E. Gordji, Nearly involutions on Banach algebras ; A fixed point approach, Fixed Point Theory. 14(2013), 117-124 .
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[9] S. -M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications 48, Springer, New York, 2011.
[10] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
[11] H. -M. Kim and I. -S. Chang, Asymptotic behavior of generalized ${ }^{*}$-derivations on C^{*}-algebras with applications, J. Math. Phys. 56 (2015), 7 pages.
[12] H. -M. Kim and H. -Y. Shin, Approximate Cubic Lie Derivations on ρ-Complete Convex Modular Algebras, J. Funct. Spaces, 2018 (2018), 8 pages.
[13] G. J. Murphy, C^{*}-algebras and Operator Theory, Academic press INC. New York 1990.
[14] T. Miura, G. Hirasawa, and S. E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), 522-530.
[15] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[16] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, 1960.

Department of Mathematics
Chungnam National University
99 Daehangno, Yuseong-gu, Daejeon 34134, Republic of Korea.
E-mail: ischang@cnu.ac.kr

