NONABELIAN GROUP ACTIONS ON 3-DIMENSIONAL NILMANIFOLDS WITH THE FIRST HOMOLOGY $\mathbb{Z}^{2} \oplus \mathbb{Z}_{2}$

Mina Han*, Daehwan Koo**, and Joonkook Shin***

Abstract. We study free actions of finite nonabelian groups on 3-dimensional nilmanifolds with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{2}$, up to topological conjugacy. We show that there exist three kinds of nonabelian group actions in π_{1}, two in π_{2} or $\pi_{5, i}(i=1,2,3)$, one in the other cases, and clarify what those groups are.

1. Introduction

Let \mathcal{H} be the 3 -dimensional Heisenberg group; i.e. \mathcal{H} consists of all 3×3 real upper triangular matrices with diagonal entries 1 . Thus \mathcal{H} is a simply connected, 2-step nilpotent Lie group, and it fits an exact sequence

$$
1 \rightarrow \mathbb{R} \rightarrow \mathcal{H} \rightarrow \mathbb{R}^{2} \rightarrow 1
$$

where $\mathbb{R}=\mathcal{Z}(\mathcal{H})$, the center of \mathcal{H}. Let Γ be any lattice of \mathcal{H} and $\mathcal{Z}(\mathcal{H})$ be the center of \mathcal{H}. Then $\mathbb{Z}=\Gamma \cap \mathcal{Z}(\mathcal{H})$ and $\Gamma / \Gamma \cap \mathcal{Z}(\mathcal{H})$ are lattices of $\mathcal{Z}(\mathcal{H})$ and $\mathcal{H} / \mathcal{Z}(\mathcal{H})$, respectively. Therefore, the lattice Γ is an extension of \mathbb{Z} by \mathbb{Z}^{2}, that is, there is an exact sequence:

$$
1 \rightarrow \mathbb{Z} \rightarrow \Gamma \rightarrow \mathbb{Z}^{2} \rightarrow 1
$$

Let a, b, and c be elements of Γ such that the images of a and b in \mathbb{Z}^{2} generate \mathbb{Z}^{2} and c generates the center \mathbb{Z}. Then it is known that such Γ is isomorphic to one of the following groups, for some p :

$$
\Gamma_{p}=\left\langle a, b, c \mid[b, a]=c^{p},[c, a]=[c, b]=1\right\rangle, \quad p \neq 0
$$

[^0]where $[b, a]=b^{-1} a^{-1} b a$. This group is realized as a uniform lattice of \mathcal{H} if one takes
\[

a=\left[$$
\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}
$$\right], b=\left[$$
\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$\right], c=\left[$$
\begin{array}{lll}
1 & 0 & \frac{1}{p} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$\right] .
\]

Then Γ_{1} is the discrete subgroup of \mathcal{H} consisting of all integral matrices and Γ_{p} is a lattice of \mathcal{H} containing Γ_{1} with index p. Remark that Γ_{p} is equal to Γ_{-p}. Clearly

$$
\mathrm{H}_{1}\left(\mathcal{H} / \Gamma_{p} ; \mathbb{Z}\right)=\Gamma_{p} /\left[\Gamma_{p}, \Gamma_{p}\right]=\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}
$$

Note that these $\Gamma_{p}{ }^{\prime}$ s produce infinitely many distinct nilmanifolds

$$
\mathcal{N}_{p}=\mathcal{H} / \Gamma_{p}
$$

covered by the standard nilmanifold \mathcal{N}_{1}.
The classification of finite group actions on a 3-dimensional nilmanifold can be understood by the works of Bieberbach, Heil and Waldhausen $[6,7,12]$. Free actions of cyclic, abelian and finite group on the 3-torus were studied in [8], [11] and [5], respectively. It is known ([4; Proposition 6.1.]) that there are 15 classes of distinct closed 3-dimensional manifolds M with a Nil-geometry. It is interesting ([3]) that if a finite group G acts freely on the (standard) 3-dimensional nilmanifold \mathcal{N}_{1} with the first homology \mathbb{Z}^{2}, then either G is cyclic or there does not exist any finite group acting freely on the standard nilmanifold \mathcal{N}_{1} which yields an infra-nilmanifold homeomorphic to \mathcal{H} / π_{3} or \mathcal{H} / π_{4}. Free actions of finite abelian groups on the 3-dimensional nilmanifold \mathcal{N}_{p} with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}$ were classified in [1]. Recently, the results of [1] were generalized by changing the finite abelian conditions to finite group conditions in [10], where the authors classified the free actions of finite groups on 3 -dimensional nilmanifolds \mathcal{N}_{p} with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}$ by using the method in [1], up to topological conjugacy. However, since the finite groups acting freely on \mathcal{N}_{p} are represented by generators in [10], it is difficult to know exactly what those finite groups are.

In this paper we focus on the free actions of finite nonabelian groups on \mathcal{N}_{2} with $\mathrm{H}_{1}\left(\mathcal{H} / \Gamma_{2} ; \mathbb{Z}\right)=\mathbb{Z}^{2} \oplus \mathbb{Z}_{2}$. Note that our results cannot be obtained directly from [10], because of many unknown variables. But when $p=2$ and $n=1$, we can find a necessary and sufficient conditions for being a normal nilpotent subgroup of an almost Bieberbach group,
and classify those nonabelian groups. This classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all possible finite group actions on 3-dimensional nilmanifolds with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{2}$. The problem will be reduced to a purely grouptheoretic one. We quote most of the Introduction and Section 2 of [1] in this section for the reader's convenience.

Note that if $M=\mathcal{H} / \pi$ is a 3 -dimensional infra-nilmanifold, then there is a diffeomorphism f between \mathcal{H} and \mathbb{R}^{3}, and an isomorphism φ between π and π^{\prime}, where π^{\prime} is a subgroup of

$$
\operatorname{Aff}\left(\mathbb{R}^{3}\right)=\mathbb{R}^{3} \rtimes \mathrm{GL}(3, \mathbb{R})
$$

such that (π, \mathcal{H}) and $\left(\pi^{\prime}, \mathbb{R}^{3}\right)$ are weakly equivariant. Therefore, an infra-nilmanifold $M=\mathcal{H} / \pi$ is diffeomorphic to an affine manifold $M^{\prime}=$ $\mathbb{R}^{3} / \pi^{\prime}$.

The following is the list for 15 kinds of the 3 -dimensional almost Bieberbach groups imbedded in $\operatorname{Aff}(\mathcal{N})=\mathcal{N} \rtimes\left(\mathbb{R}^{2} \rtimes \operatorname{GL}(2, \mathbb{R})\right)([10$, p.1414]). We shall use
$t_{1}=\left(\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], I\right), \quad t_{2}=\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right], I\right), \quad t_{3}=\left(\left[\begin{array}{ccc}1 & 0 & -\frac{1}{K} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], I\right)$,
respectively, where I is the identity in $\operatorname{Aut}(\mathcal{N})=\mathbb{R}^{2} \rtimes \mathrm{GL}(2, \mathbb{R})$. In each presentation, n is any positive integer and t_{3} is central except π_{3} and π_{4}. Note that t_{1} and t_{2} are fixed, but K in t_{3} varies for each $\pi_{i, j}$. For example, $K=n$ for $\pi_{1} ; K=2 n$ for π_{2}, etc.
$\pi_{1}=\left\langle t_{1}, t_{2}, t_{3} \mid\left[t_{2}, t_{1}\right]=t_{3}^{n}\right\rangle$,
$\pi_{2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{2 n}, \alpha^{2}=t_{3}, \alpha t_{1} \alpha^{-1}=t_{1}^{-1}, \alpha t_{2} \alpha^{-1}=t_{2}^{-1}\right\rangle$, $\pi_{3}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right|\left[t_{2}, t_{1}\right]=t_{3}^{2 n},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1, \alpha t_{3} \alpha^{-1}=t_{3}^{-1}$, $\left.\alpha t_{1} \alpha^{-1}=t_{1}, \alpha t_{2}=t_{2}^{-1} \alpha t_{3}^{-n}, \alpha^{2}=t_{1}\right\rangle$, $\pi_{4}=\left\langle t_{1}, t_{2}, t_{3}, \alpha, \beta\right|\left[t_{2}, t_{1}\right]=t_{3}^{4 n},\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=\left[\alpha, t_{3}\right]=1$, $\beta t_{3} \beta^{-1}=t_{3}^{-1}, \alpha t_{1}=t_{1}^{-1} \alpha t_{3}^{2 n}, \alpha t_{2}=t_{2}^{-1} \alpha t_{3}^{-2 n}$, $\alpha^{2}=t_{3}, \beta^{2}=t_{1}, \beta t_{1} \beta^{-1}=t_{1}, \beta t_{2}=t_{2}^{-1} \beta t_{3}^{-2 n}$, $\left.\alpha \beta=t_{1}^{-1} t_{2}^{-1} \beta \alpha t_{3}^{-(2 n+1)}\right\rangle$,

$$
\begin{aligned}
\pi_{5,1} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4 n-2}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}\right\rangle \\
\pi_{5,2} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}^{3}\right\rangle \\
\pi_{5,3} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}\right\rangle \\
\pi_{6,1} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}\right\rangle \\
\pi_{6,2} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}^{2}\right\rangle \\
\pi_{6,3} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n-2}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}^{2}\right\rangle, \\
\pi_{6,4} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3 n-1}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}\right\rangle \\
\pi_{7,1} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}\right\rangle \\
\pi_{7,2} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n-2}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}\right\rangle \\
\pi_{7,3} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}^{5}\right\rangle \\
\pi_{7,4} & =\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6 n-4}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}^{5}\right\rangle .
\end{aligned}
$$

Let $\left(G, \mathcal{N}_{p}\right)$ be a free affine action of a finite group G on the nilmanifold \mathcal{N}_{p}. Then \mathcal{N}_{p} / G is an infra-nilmanifold. Let $\pi=\pi_{1}\left(\mathcal{N}_{p} / G\right)$, and $\Gamma_{p}=\pi_{1}\left(\mathcal{N}_{p}\right)$. Then π is an almost Bieberbach group. In fact, since the covering projection $\mathcal{N}_{p} \rightarrow \mathcal{N}_{p} / G$ is regular, Γ_{p} is a normal subgroup of π.

Definition 2.1. Let $\pi \subset \operatorname{Aff}(\mathcal{H})=\mathcal{H} \rtimes \operatorname{Aut}(\mathcal{H})$ be an almost Bieberbach group, and let N_{1}, N_{2} be subgroups of π. We say that $\left(N_{1}, \pi\right)$ is affinely conjugate to $\left(N_{2}, \pi\right)$, denoted by $N_{1} \sim N_{2}$, if there exists an element $(t, T) \in \operatorname{Aff}(\mathcal{H})$ such that $(t, T) \pi(t, T)^{-1}=\pi$ and $(t, T) N_{1}(t, T)^{-1}=N_{2}$.

Suppose there are two normal subgroups N, N^{\prime} of π. The two actions of $\pi / N, \pi / N^{\prime}$ are equivalent if and only if there exists a homeomorphism f of \mathcal{H} which conjugates the pair (N, π) into $\left(N^{\prime}, \pi\right)$. Of course, such a conjugation is achieved by an affine map $f \in \operatorname{Aff}(\mathcal{H})$.

Our classification problem of free finite group actions $\left(G, \mathcal{N}_{p}\right)$ with

$$
\pi_{1}\left(\mathcal{N}_{p} / G\right) \cong \pi
$$

can be solved by finding all normal nilpotent subgroups N of π each of which is isomorphic to Γ_{p}, and classify (N, π) up to affine conjugacy. This procedure is a purely group-theoretic problem and can be handled by affine conjugacy.

The following proposition is a working criterion for determining all normal nilpotent subgroups of π isomorphic to Γ_{p}.

Proposition 2.2 ([1, Proposition 3.1]). Let N be a normal nilpotent subgroup of an almost Bieberbach group π and isomorphic to Γ_{p}. Then N can be represented by a set of generators

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{n_{1}}, t_{2}^{d_{2}} t_{3}^{n_{2}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle
$$

where d_{1}, d_{2} are divisors of $p ; K$ is determined by $t_{3}^{K}=\left[t_{2}, t_{1}\right] ; 0 \leq$ $m<d_{2}, \quad 0 \leq n_{i}<\frac{K d_{1} d_{2}}{p}(i=1,2)$.

3. Free actions of finite nonabelian groups on the nilmanifold \mathcal{N}_{2}

In this section, we shall find all possible finite groups acting freely (up to topological conjugacy) on the 3-dimensional nilmanifold \mathcal{N}_{2} which yield an orbit manifold homeomorphic to $\mathcal{H} / \pi_{i}(i=1,2,5,6,7)$. Note that we deal only with $n=1$ to clarify those groups in this paper. Nonabelian groups acting freely (up to topological conjugacy) on the 3-dimensional nilmanifold \mathcal{N}_{2} which yield an orbit manifold homeomorphic to \mathcal{H} / π_{3} or \mathcal{H} / π_{4} were studied in [9]. This, as in other parts of calculations, was done by the program Mathematica [13] and handchecked.

Theorem 3.1. (π_{1}) Suppose F is a finite nonabelian group acting freely on \mathcal{N}_{2} which yields an orbit manifold homeomorphic to \mathcal{H} / π_{1}. Then F is isomorphic to either the dihedral group D_{4} or the quaternion group Q_{8}.

Proof. Note that $\pi_{1}=\left\langle t_{1}, t_{2}, t_{3} \mid\left[t_{2}, t_{1}\right]=t_{3}^{n}\right\rangle$.
Let $N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle$ be a normal nilpotent subgroup of π_{1} and isomorphic to Γ_{2}. Take $n=1$. Then $\left[\pi_{1}, \pi_{1}\right]=t_{3}$. Since d_{1}, d_{2} are divisors of $2,0 \leq m<\bar{d}=g c d\left(d_{1}, d_{2}\right)$, and $\frac{p m}{d_{1} d_{2}} \in \mathbb{Z}$ by proposition 2.2 , we have the following three cases.
(i) When $d_{1}=1, d_{2}=2$: In this case, we have $N=\left\langle t_{1}, t_{2}^{2}, t_{3}\right\rangle$ and $\pi_{1} / N \cong \mathbb{Z}_{2}$
(ii) When $d_{1}=2, d_{2}=1$: There exists only one normal nilpotent subgroup $N^{\prime}=\left\langle t_{1}^{2}, t_{2}, t_{3}\right\rangle$. It is easily checked that $N^{\prime} \sim N=$ $\left\langle t_{1}, t_{2}^{2}, t_{3}\right\rangle$.
(iii) When $d_{1}=2, d_{2}=2$: There exist 3 affinely non-conjuate normal nilpotent subgroups:

$$
N_{1}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{2}\right\rangle, \quad N_{2}=\left\langle t_{1}^{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle, \quad N_{3}=\left\langle t_{1}^{2} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle
$$

Thus we can obtain that $\pi_{1} / N_{1} \cong D_{4}, \pi_{1} / N_{2} \cong D_{4}$, and $\pi_{1} / N_{3} \cong$ Q_{8}.

The following lemma gives a necessary condition for being a normal nilpotent subgroup of an almost Bieberbach group which is isomorphic to Γ_{p}.

Lemma 3.2 ([10, Lemma 3.1]). Let N be a normal nilpotent subgroup of an almost Bieberbach group $\pi_{2}, \pi_{5, i}(i=1,2,3)$ or $\pi_{7, j}(j=1,2,3,4)$ which is isomorphic to Γ_{p}. Then N can be represented by one of the following sets of generators
$N_{1}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle, \quad N_{2}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle$, $N_{3}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{2}^{d_{2}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle, \quad N_{4}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{2}^{d_{2}} t_{3}^{\frac{K d_{1} d_{2}}{2 p}}, t_{3}^{\frac{K d_{1} d_{2}}{p}}\right\rangle$, where d_{1}, d_{2} are divisors of $p ; 0 \leq m<\bar{d}=\operatorname{gcd}\left(d_{1}, d_{2}\right), \frac{p m}{d_{1} d_{2}} \in \mathbb{Z}$ in the case of π_{2},
$\frac{d_{1}}{d_{2}}+\frac{m^{2}}{d_{1} d_{2}} \in \mathbb{Z}$ and d_{1} is a common divisor of m and d_{2} in the case of $\pi_{5, i}$,
$\frac{d_{1}}{d_{2}}+\frac{m\left(m-d_{1}\right)}{d_{1} d_{2}} \in \mathbb{Z}$ and $\quad d_{1}$ is a common divisor of m and d_{2} in the case of $\pi_{7, j}$.

The following proposition is a working criterion for affine conjugacy among normal nilpotent subgroups of π_{2}.

Proposition 3.3 ([10, Proposition 3.3]). Let $N_{i}(i=1,2,3,4)$ be a normal nilpotent subgroup of π_{2} in Lemma 3.2 and isomorphic to Γ_{p}. Then we have the following:
(1) $N_{1} \sim N_{2}$ if and only if $m=0, d_{1}=p$.
(2) $N_{1} \sim N_{3}$ if and only if $m=0, d_{2}=p$.
(3) $N_{1} \sim N_{4}$ if and only if $m=0, d_{1}=d_{2}=p$.
(4) $N_{2} \sim N_{3}$ if and only if $m=0, d_{1}=d_{2}$.
(5) $N_{2} \sim N_{4}$ if and only if either $m=0, d_{2}=p$, or $2 m=d_{2}, 2 d_{1}=p$.
(6) $N_{3} \sim N_{4}$ if and only if $m=0, d_{1}=p$.

Now by using Lemma 3.2 and Proposition 3.3, we can obtain the following result.

Theorem 3.4. $\left(\pi_{2}\right)$ Suppose F is a finite nonabelian group acting freely on \mathcal{N}_{2} which yields an orbit manifold homeomorphic to \mathcal{H} / π_{2}. Then F is isomorphic to either the quaternion group Q_{8} or the central product group $C_{8} \circ D_{4}$.

Proof. For the case of $n=1$, we have

$$
\pi_{2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{2}, \alpha^{2}=t_{3}, \alpha t_{1} \alpha^{-1}=t_{1}^{-1}, \alpha t_{2} \alpha^{-1}=t_{2}^{-1}\right\rangle
$$

Let N be a normal nilpotent subgroup of π_{2} which is isomorphic to Γ_{2}. Then by Lemma $3.2, N$ can be represented by one of the following sets of generators,

$$
\begin{array}{ll}
N_{1}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}}, t_{3}^{d_{1} d_{2}}\right\rangle, & N_{2}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}} t_{3}^{\frac{d_{1} d_{2}}{2}}, t_{3}^{d_{1} d_{2}}\right\rangle \\
N_{3}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{d_{1} d_{2}}{2}}, t_{2}^{d_{2}}, t_{3}^{d_{1} d_{2}}\right\rangle, & N_{4}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{d_{1} d_{2}}{2}}, t_{2}^{d_{2}} t_{3}^{\frac{d_{1} d_{2}}{2}}, t_{3}^{d_{1} d_{2}}\right\rangle
\end{array}
$$

where d_{1}, d_{2} are divisors of $p=2$ and $0 \leq m<\operatorname{gcd}\left(d_{1}, d_{2}\right), \frac{p m}{d_{1} d_{2}} \in \mathbb{Z}$.
(i) When $d_{1}=d_{2}=1: m=0$. Since $\frac{d_{1} d_{2}}{2}=\frac{1}{2} \notin \mathbb{Z}, N_{2}, N_{3}$, and N_{4} do not occur. Thus we have only one normal subgroup $N=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$ and $\pi_{2} / N=\langle\alpha N\rangle \cong \mathbb{Z}_{2}$.
(ii) When $d_{1}=1, d_{2}=2$: Since $0 \leq m<1$, we have $m=0$. Thus $\frac{2 m}{d_{1} d_{2}}=0 \in \mathbb{Z}$ and the possible normal nilpotent subgroups are

$$
\begin{gathered}
N_{1}=\left\langle t_{1}, t_{2}^{2}, t_{3}^{2}\right\rangle, \quad N_{2}=\left\langle t_{1}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle \\
N_{3}=\left\langle t_{1} t_{3}, t_{2}^{2}, t_{3}^{2}\right\rangle, \quad N_{4}=\left\langle t_{1} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle
\end{gathered}
$$

It is not hard to see that $N_{1} \sim N_{3}$ and $N_{2} \sim N_{4}$ by Proposition 3.3. The normality can be easily checked as follows:
$\alpha t_{2}^{2} \alpha^{-1}=t_{2}^{-2} \in N_{1}, \quad \alpha\left(t_{1}\right) \alpha^{-1}=t_{1}^{-1} \in N_{1}, \quad \alpha\left(t_{2}^{2} t_{3}\right) \alpha^{-1}=t_{2}^{-2} t_{3} \in N_{2}$.
Since $N_{1} \supset\left[\pi_{2}, \pi_{2}\right]=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{2}\right\rangle$, we can conclude that π_{2} / N_{1} is abelian and

$$
\pi_{2} / N_{1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1}, t_{2}^{2}, t_{3}^{2}\right\rangle=\left\langle\alpha N_{1}, t_{2} N_{1}\right\rangle \cong \mathbb{Z}_{4} \times \mathbb{Z}_{2}
$$

Note that π_{2} / N_{2} is nonabelian and

$$
\pi_{2} / N_{2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle \cong\left\langle\alpha N_{2}, t_{2} N_{2}\right\rangle
$$

Since

$$
\begin{gathered}
\left(t_{2} N_{2}\right)^{2}=\left(t_{2}^{2}\right) N_{2}=\left(t_{2}^{2} t_{3}\right) t_{3} N_{2}=t_{3} N_{2}=\alpha^{2} N_{2} \\
\left(t_{2} N_{2}\right)^{4}=N_{2}, \quad\left(\alpha N_{2}\right)^{4}=t_{3}^{2} N_{2}=N_{2} \\
\left(\alpha N_{2}\right)\left(t_{2} N_{2}\right)\left(\alpha N_{2}\right)^{-1}=\left(\alpha t_{2} \alpha^{-1}\right) N_{2}=t_{2}^{-1} N_{2}=\left(t_{2} N_{2}\right)^{-1}
\end{gathered}
$$

we can conclude that

$$
\begin{array}{r}
\pi_{2} / N_{2}=\left\langle t_{2} N_{2}, \alpha N_{2}\right|\left(t_{2} N_{2}\right)^{4}=1,\left(t_{2} N_{2}\right)^{2}=\left(\alpha N_{2}\right)^{2} \\
\left.\left(\alpha N_{2}\right)\left(t_{2} N_{2}\right)\left(\alpha N_{2}\right)^{-1}=\left(t_{2} N_{2}\right)^{-1}\right\rangle
\end{array}
$$

Let $a=t_{2} N_{2}$ and $b=\alpha N_{2}$. Then this group is isomorphic to the quaternion group

$$
Q_{8}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a b^{-1}=a^{-1}\right\rangle .
$$

(iii) When $d_{1}=2, d_{2}=1$: There exist 2 affinely non-conjuate normal subgroups

$$
N_{1}^{\prime}=\left\langle t_{1}^{2}, t_{2}, t_{3}^{2}\right\rangle, \quad N_{3}^{\prime}=\left\langle t_{1}^{2} t_{3}, t_{2}, t_{3}^{2}\right\rangle .
$$

It is easy to see that $N_{1}^{\prime} \sim N_{1}$ and $N_{3}^{\prime} \sim N_{2}$ as in the case (ii).
(iv) When $d_{1}=d_{2}=2$: Since $\frac{p m}{d_{1} d_{2}}=\frac{2 m}{4}=\frac{m}{2} \in \mathbb{Z}$, we have $m=0$. Since $N_{1} \sim N_{2}, N_{1} \sim N_{3}$, and $N_{2} \sim N_{4}$ by Proposition 3.3, there exists only one normal nilpotent subgroup $N_{1}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$ of π_{2}. Note that π_{2} / N_{1} is nonabelian and the normality can be easily checked. Thus we have

$$
\pi_{2} / N_{1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle=\left\langle\alpha N_{1}, t_{1} N_{1}, t_{2} N_{1}\right\rangle .
$$

From the following relations

$$
\begin{gathered}
\left(\alpha N_{1}\right)^{2}=t_{3} N_{1}, \quad\left(\alpha N_{1}\right)^{4}=t_{3}^{2} N_{1},\left(\alpha N_{1}\right)^{8}=N_{1},\left(t_{1} N_{1}\right)^{2}=\left(t_{2} N_{1}\right)^{2}=N_{1}, \\
\left(t_{2} N_{1}\right)\left(t_{1} N_{1}\right)\left(t_{2} N_{1}\right)=\left(t_{2} t_{1} t_{2}\right) N_{1}=\left(t_{1} t_{2}^{2} t_{3}^{2}\right) N_{1}=\left(t_{1} \alpha^{4}\right) N_{1},
\end{gathered}
$$

we have

$$
\begin{aligned}
\pi_{2} / N_{2}= & \left\langle\alpha N_{1}, t_{1} N_{1}, t_{2} N_{1}\right|\left(\alpha N_{1}\right)^{8}=\left(t_{1} N_{1}\right)^{2}=\left(t_{2} N_{1}\right)^{2}=1, \\
& \left(\alpha N_{1}\right)^{4}=\left(t_{3} N_{1}\right)^{2},\left(t_{2} N_{1}\right)\left(t_{1} N_{1}\right)\left(t_{2} N_{1}\right)=\left(\alpha N_{1}\right)^{4}\left(t_{1} N_{1}\right), \\
& \left.\left(\alpha N_{1}\right)\left(t_{1} N_{1}\right)=\left(t_{1} N_{1}\right)\left(\alpha N_{1}\right),\left(\alpha N_{1}\right)\left(t_{2} N_{1}\right)=\left(t_{2} N_{1}\right)\left(\alpha N_{1}\right)\right\rangle .
\end{aligned}
$$

Let $a=\alpha N_{1}, b=t_{1} N_{1}$, and $c=t_{2} N_{1}$. Then this group is isomorphic to the central product group
$C_{8} \circ D_{4}=\left\langle a, b, c \mid a^{8}=c^{2}=1, b^{2}=a^{4}, a b=b a, a c=c a, c b c=a^{4} b\right\rangle$.
The following proposition is a working criterion for affine conjugacy among normal nilpotent subgroups of $\pi_{5, i}(i=1,2,3)$.

Proposition 3.5 ([10, Proposition 3.12]). Let $N_{j}(j=1,2,3,4)$ be a normal nilpotent subgroup of $\pi_{5, i} i=1,2,3$) in Lemma 3.2 and isomorphic to Γ_{p}. Then we have the following :
(1) $N_{1} \sim N_{4}$ if and only if $m=0, d_{1}=d_{2}=p$.
(2) $N_{2} \sim N_{3}$ if and only if $m=0, d_{1}=d_{2}$.
(3) $N_{1} \nsim N_{2}, N_{1} \nsim N_{3}, N_{2} \nsim N_{4} N_{3} \nsim N_{4}$.

Now by using Lemma 3.2 and Proposition 3.5, we can obtain the following result.

Theorem 3.6. $\left(\pi_{5, i}\right)$ Suppose F is a finite nonabelian group acting freely on \mathcal{N}_{2} which yields an orbit manifold homeomorphic to $\mathcal{H} / \pi_{5, i} i=$ $1,2,3)$. Then F is isomorphic to the modular maximal-cyclic group M_{16} or $D_{4} . C_{8}$ (the non-split extension by D_{4} of C_{8} acting via $C_{8} / C_{4}=C_{2}$) in the case $\pi_{5,1}$ and M_{32} or $D_{4} \cdot C_{16}$ (the non-split extension by D_{4} of C_{16} acting via $C_{16} / C_{4}=C_{2}$) in the case $\pi_{5,2}$ and $\pi_{5,3}$.

Proof. We shall deal with the case $\pi_{5,2}$. Note that when $n=1$, we have

$$
\pi_{5,2}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{4}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{4}=t_{3}^{3}\right\rangle
$$

Let N be a normal nilpotent subgroup of $\pi_{5,2}$ which is isomorphic to Γ_{2}. Then by Lemma 3.2, N can be represented by one of the following sets of generators

$$
\begin{array}{ll}
N_{1}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}}, t_{3}^{2 d_{1} d_{2}}\right\rangle, & N_{2}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}} t_{3}^{d_{1} d_{2}}, t_{3}^{2 d_{1} d_{2}}\right\rangle \\
N_{3}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{d_{1} d_{2}}, t_{2}^{d_{2}}, t_{3}^{2 d_{1} d_{2}}\right\rangle, & N_{4}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{d_{1} d_{2}}, t_{2}^{d_{2}} t_{3}^{d_{1} d_{2}}, t_{3}^{2 d_{1} d_{2}}\right\rangle
\end{array}
$$

where d_{1}, d_{2} are divisors of $p=2,0 \leq m<d_{2}, \frac{d_{1}}{d_{2}}+\frac{m^{2}}{d_{1} d_{2}} \in \mathbb{Z}$, and d_{1} is a common divisor of m and d_{2}. Hence there are three possibilities.
(i) When $d_{1}=d_{2}=1: m=0$. Then the possible normal nilpotent subgroups are

$$
\begin{array}{ll}
N_{1}=\left\langle t_{1}, t_{2}, t_{3}^{2}\right\rangle, & N_{2}=\left\langle t_{1}, t_{2} t_{3}, t_{3}^{2}\right\rangle \\
N_{3}=\left\langle t_{1} t_{3}, t_{2}, t_{3}^{2}\right\rangle, & N_{4}=\left\langle t_{1} t_{3}, t_{2} t_{3}, t_{3}^{2}\right\rangle
\end{array}
$$

Since $\alpha\left(t_{2} t_{3}\right) \alpha^{-1}=t_{1}^{-1} t_{3} \notin N_{2}$ and N_{2} is affinely conjugate to N_{3} by Proposition 3.5, we have two normal nilpotent subgroups N_{1}, N_{4}. Since $N_{1} \supset\left[\pi_{5,2}, \pi_{5,2}\right]=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4}\right\rangle, \pi_{5,2} / N_{1}$ is abelian and $\pi_{5,2} / N_{1}=$ $\left\langle\alpha N_{1}\right\rangle \cong \mathbb{Z}_{8}$.

Similarly, we can get $\pi_{5,2} / N_{4}=\left\langle\alpha N_{4}\right\rangle \cong \mathbb{Z}_{8}$.
(ii) When $d_{1}=1, d_{2}=2$: Note that $0 \leq m<d_{2}$. If $m=0$, then $\frac{d_{1}}{d_{2}}+\frac{m^{2}}{d_{1} d_{2}}=\frac{1}{2} \notin \mathbb{Z}$. Hence we must have $m=1$ and the possible normal nilpotent subgroups are

$$
\begin{array}{cc}
N_{1}=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4}\right\rangle, & N_{2}=\left\langle t_{1} t_{2}, t_{2}^{2} t_{3}^{2}, t_{3}^{4}\right\rangle, \\
N_{3}=\left\langle t_{1} t_{2} t_{3}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle, & N_{4}=\left\langle t_{1} t_{2} t_{3}^{2}, t_{2}^{2} t_{3}^{2}, t_{3}^{4}\right\rangle .
\end{array}
$$

From the following relations
$\alpha t_{2}^{2} \alpha^{-1}=t_{1}^{-2}=t_{2}^{2}\left(t_{1} t_{2}\right)^{-2} \in N_{1}, \alpha\left(t_{1} t_{2}\right) \alpha^{-1}=t_{2} t_{1}^{-1}=t_{2}^{2}\left(t_{1} t_{2}\right)^{-1} \in N_{1}$, $\alpha\left(t_{1} t_{2}\right) \alpha^{-1}=t_{2} t_{1}^{-1}=\left(t_{1} t_{2}\right)^{-1} t_{2}^{2} \notin N_{2}$,
$\alpha\left(t_{1} t_{2} t_{3}^{2}\right) \alpha^{-1}=\alpha\left(t_{1} t_{2}\right) \alpha^{-1} t_{3}^{2}=t_{2} t_{1}^{-1} t_{3}^{2}=\left(t_{1} t_{2} t_{3}\right)^{-1} t_{2}^{2} t_{3}^{4} \in N_{3}$,
$\alpha\left(t_{1} t_{2} t_{3}^{2}\right) \alpha^{-1}=t_{2} \alpha t_{2} \alpha^{-1} t_{3}^{2}=t_{2} t_{1}^{-1} t_{3}^{2}=\left(t_{1} t_{2} t_{3}\right)^{-1} t_{2}^{2} t_{3}^{4} \notin N_{4}$,
we can conclude that there exist two normal nilpotent subgroups N_{1}, N_{3} of $\pi_{5,2}$. Since $N_{1} \supset\left[\pi_{5,2}, \pi_{5,2}\right]=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$, we obtain that $\pi_{5,2} / N_{1}$ is abelian and

$$
\pi_{5,2} / N_{1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4}\right\rangle=\left\langle\alpha N_{1}, t_{2} N_{1}\right\rangle \cong \mathbb{Z}_{16} \times \mathbb{Z}_{2}
$$

Note that $\pi_{5,2} / N_{3}$ is nonabelian and

$$
\pi_{5,2} / N_{3}=\left\langle t_{1}, t_{2}, t_{3}, \alpha\right\rangle /\left\langle t_{1} t_{2} t_{3}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle=\left\langle\alpha N_{3}, t_{2} N_{3}\right\rangle
$$

Since

$$
\begin{aligned}
& t_{1} N_{3}=\left(t_{1} t_{2} t_{3}^{2}\right) t_{3}^{-2} t_{2}^{-1} N_{3}=t_{3}^{-2} t_{2}^{-1} N_{3}=t_{3}^{-2} t_{2}^{-1} t_{3}^{4} N_{3}=t_{3}^{2} t_{2}^{-1} N_{3} \\
& \quad=\alpha^{8} t_{2}^{-1} N_{3} \\
& \left(t_{2} N_{3}\right)\left(\alpha N_{3}\right)=\left(\alpha t_{1}\right) N_{3}=\alpha\left(\alpha^{8} t_{2}^{-1}\right) N_{3}=\alpha^{9} t_{2}^{-1} N_{3}=\left(\alpha N_{3}\right)^{9}\left(t_{2} N_{3}\right)^{-1}
\end{aligned}
$$ we have

$$
\begin{gathered}
\pi_{5,2} / N_{3}=\left\langle\alpha N_{3}, t_{2} N_{3}\right|\left(\alpha N_{3}\right)^{16}=\left(t_{2} N_{3}\right)^{2}=1 \\
\left.\left(t_{2} N_{3}\right)\left(\alpha N_{3}\right)=\left(\alpha N_{3}\right)^{9}\left(t_{2} N_{3}\right)^{-1}\right\rangle
\end{gathered}
$$

Let $a=\alpha N_{3}$ and $b=t_{2} N_{3}$. Then this group is isomorphic to the modular maximal-cyclic group

$$
M_{32}=M_{5}(2)=\left\langle a, b \mid a^{16}=b^{2}=1, b a b=a^{9}\right\rangle
$$

(iii) When $d_{1}=d_{2}=2$: If $m=1$, then $\frac{d_{1}}{d_{2}}+\frac{m^{2}}{d_{1} d_{2}}=1+\frac{1}{4} \notin \mathbb{Z}$. Thus there does not exist any normal nilpotent subgroup. If $m=0$, then N_{1} is affinely conjugate to N_{4} and N_{2} is affinely conjugate to N_{3} by Proposition 3.5. Hence we have the following two possible normal nilpotent subgroups

$$
N_{1}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{8}\right\rangle, \quad N_{2}=\left\langle t_{1}^{2}, t_{2}^{2} t_{3}^{2}, t_{3}^{8}\right\rangle
$$

Since

$$
\alpha\left(t_{1}^{2}\right) \alpha^{-1}=t_{2}^{2} \in N_{1}, \quad \alpha\left(t_{1}^{2}\right) \alpha^{-1}=t_{2}^{2} \notin N_{2}, \quad \alpha\left(t_{2}^{2}\right) \alpha^{-1}=t_{1}^{-2} \in N_{1}
$$

we can conclude that N_{2} is not a normal subgroup of $\pi_{5,2}$ and there exists only one normal nilpotent subgroup N_{1} of $\pi_{5,2}$. Let $w_{1}=t_{1} t_{3}^{2} N_{1}, w_{2}=$ $t_{2} N_{1}, w_{3}=t_{3} N_{1}$, and $\beta=\alpha N_{1}$. From the following relations

$$
\operatorname{ord}\left(w_{1}\right)=4, \quad \text { ord }\left(w_{2}\right)=2, \quad \text { ord }\left(w_{3}\right)=8 \quad \text { and } \quad\left(w_{1}\right)^{2}=\left(w_{3}\right)^{4}
$$

$$
w_{2} w_{1} w_{2}=t_{2}\left(t_{1} t_{3}^{2}\right) t_{2} N_{1}=\left(t_{1} t_{2} t_{3}^{4}\right) t_{2} t_{3}^{2} N_{1}=\left(t_{1} t_{3}^{2}\right)^{3} t_{2}^{2} t_{1}^{-2} N_{1}=w_{1}^{3}
$$

we can obtain that

$$
\begin{aligned}
F= & \pi_{5,2} / N_{1}=\left(\Gamma_{2} / N_{1}\right) \tilde{\times} \mathbb{Z}_{4} \cong\left(C_{8} \circ D_{4}\right) \tilde{\times} \mathbb{Z}_{4} \\
= & \left\langle w_{1}, w_{2}, w_{3}, \beta\right| w_{2}^{2}=w_{3}^{8}=1, w_{1}^{2}=w_{3}^{4}, \quad \beta^{4}=w_{3}^{3}, \quad w_{2} w_{1} w_{2}=w_{3}^{4} w_{1} \\
& \left.\beta w_{1} \beta^{-1}=w_{2} w_{3}^{2}, \beta w_{2} \beta^{-1}=w_{1}^{-1} w_{3}^{2}, \quad w_{1} w_{3}=w_{3} w_{1}, \quad w_{2} w_{3}=w_{3} w_{2}\right\rangle \\
\cong & D_{4} \cdot C_{16}
\end{aligned}
$$

where $D_{4} \cdot C_{16}$ is the non-split extension by D_{4} of C_{16} acting via $C_{16} / C_{8}=$ C_{2}.

The other cases can be done similarly.
The following propositions are a working criterion for affine conjugacy among normal nilpotent subgroups of π_{6}.

Proposition 3.7 ([10, Proposition 3.16]). Let $N_{j}(j=1,2,3)$ be a normal nilpotent subgroup of $\pi_{6, i}(i=1,2)$ and isomorphic to Γ_{p}. Then we have the following:
(1) $N_{1}^{\ell, r} \sim N_{1}^{\ell^{\prime}, r^{\prime}} \quad$ if and only if $\quad\left(r-r^{\prime}, \ell-\ell^{\prime}\right)=(0,0), \quad\left(\frac{K d_{2}}{3}, \frac{K d_{1}}{3}\right)$,

$$
\left(\frac{K d_{2}}{3},-\frac{2 K d_{1}}{3}\right),\left(\frac{2 K d_{2}}{3}, \frac{2 K d_{1}}{3}\right),\left(\frac{2 K d_{2}}{3},-\frac{K d_{1}}{3}\right)
$$

(2) $N_{2}^{\ell, r} \sim N_{2}^{\ell^{\prime}, r^{\prime}}$ if and only if $\left(r-r^{\prime}, \ell-\ell^{\prime}\right)=(0,0), \quad\left(\frac{K d_{2}}{3}, \frac{2 K d_{1}}{3}\right)$,

$$
\left(\frac{K d_{2}}{3},-\frac{K d_{1}}{3}\right),\left(\frac{2 K d_{2}}{3}, \frac{K d_{1}}{3}\right),\left(\frac{2 K d_{2}}{3},-\frac{2 K d_{1}}{3}\right)
$$

(3) $N_{3}^{\ell, r} \sim N_{3}^{\ell^{\prime}, r^{\prime}}$ if and only if $\left(r-r^{\prime}, \ell-\ell^{\prime}\right)=(0,0),\left(\frac{K d_{2}}{3}, 0\right),\left(\frac{2 K d_{2}}{3}, 0\right)$.
(4) $N_{1} \nsim N_{2}, \quad N_{1} \nsim N_{3}, \quad N_{2} \nsim N_{3}$.

Proposition 3.8 ([10, Proposition 3.17]). Let $N_{j}(j=1,2,3)$ be a normal nilpotent subgroup of $\pi_{6, i}(i=3,4)$ and isomorphic to Γ_{p}. If $r \neq r^{\prime}$ or $\ell \neq \ell^{\prime}$, then

$$
N_{i}^{\ell, r} \nsim N_{j}^{\ell^{\prime}, r^{\prime}} \quad(1 \leq i, \quad j \leq 3)
$$

Theorem 3.9. $\left(\pi_{6, i}\right)$ Suppose F is a finite nonabelian group acting freely on \mathcal{N}_{2} which yields an orbit manifold homeomorphic to $\mathcal{H} / \pi_{6, i}$. Then F is isomorphic to the $Q_{8} \rtimes C_{9}$ (the semidirect product of Q_{8} and C_{9} acting via $\left.C_{9} / C_{3}=C_{3}\right)$ in the case $\pi_{6,1}$ and $\pi_{6,2}, S L_{2}\left(\mathbb{F}_{3}\right)$ (the special linear group on \mathbb{F}_{3}^{2}) in the case $\pi_{6,3}$, and $C_{4} \cdot A_{4}$ (the central extension by C_{4} of A_{4}) in the case $\pi_{6,4}$.

Proof. When $n=1$, we have
$\pi_{6,1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{3}, \alpha t_{1} \alpha^{-1}=t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1} t_{2}^{-1}, \alpha^{3}=t_{3}\right\rangle$.
Let N be a normal nilpotent subgroup of $\pi_{6,1}$ and isomorphic to Γ_{2}. Then

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{3 d_{1} d_{2}}{p}}\right\rangle, \quad\left(0 \leq m<d_{2}, 0 \leq \ell, r<\frac{3 d_{1} d_{2}}{p}\right)
$$

where d_{1} and d_{2} are divisors of $p=2, \frac{d_{1}}{d_{2}}-\frac{m}{d_{2}}+\frac{m^{2}}{d_{1} d_{2}} \in \mathbb{Z}$.
It is not hard to induce that

$$
d_{2}=(2 s-1) d_{1}(s \in \mathbb{N}), \quad m=0, \quad d_{1}=d_{2}=2
$$

By the normality of $N=\left\langle t_{1}^{2} t_{3}^{\ell}, t_{2}^{2} t_{3}^{r}, t_{3}^{6}\right\rangle$, we have the following relations:

$$
\begin{aligned}
& \alpha\left(t_{1}^{2} t_{3}^{\ell}\right) \alpha^{-1}=t_{2}^{2} t_{3}^{\ell}=\left(t_{2}^{2} t_{3}^{r}\right) t_{3}^{\ell-r} \in N, \quad \ell=r \\
& \alpha\left(t_{2}^{2} t_{3}^{\ell}\right) \alpha^{-1}=t_{1}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2}^{-1} t_{3}^{\ell}=t_{1}^{-1}\left(t_{1}^{-1} t_{2}^{-1} t_{3}^{3}\right) t_{2}^{-1} t_{3}^{\ell}=t_{1}^{-2} t_{2}^{-2} t_{3}^{3+\ell} \\
& =\left(t_{1}^{2} t_{3}^{\ell}\right)^{-1}\left(t_{2}^{2} t_{3}^{\ell}\right)^{-1} t_{3}^{3 \ell+3} \in N, \quad \ell=r=1,3,5
\end{aligned}
$$

Hence there exist three possible normal nilpotent subgroups of $\pi_{6,1}$:

$$
N_{1}=\left\langle t_{1}^{2} t_{3}, t_{2}^{2} t_{3}, t_{3}^{6}\right\rangle, \quad N_{3}=\left\langle t_{1}^{2} t_{3}^{3}, t_{2}^{2} t_{3}^{3}, t_{3}^{6}\right\rangle, \quad N_{5}=\left\langle t_{1}^{2} t_{3}^{5}, t_{2}^{2} t_{3}^{5}, t_{3}^{6}\right\rangle
$$

Since N_{1} is affinely conjugate to N_{3} and N_{5} by Proposition 3.7, we have only one normal nilpotent subgroup N_{1} of $\pi_{6,1}$. Note that $\pi_{6,1} / N$ is abelian if and only if

$$
N \supset\left[\pi_{6,1}, \pi_{6,1}\right]=\left\langle t_{2} t_{1}^{-1}, t_{1}^{-1} t_{2}^{-2}, t_{3}^{3}\right\rangle=\left\langle t_{1} t_{2}^{-1}, t_{2}^{3}, t_{3}^{3}\right\rangle
$$

Thus we obtain that $\pi_{6,1} / N_{1}$ is nonabelian.
Let $w_{1}=t_{1} t_{3}^{2} N_{1}, \quad w_{2}=t_{2} t_{3}^{2} N_{1}, \quad w_{3}=t_{3}^{2} N_{1}$, and $\beta=\alpha N_{1}$.
From the following relations

$$
\begin{aligned}
& \operatorname{ord}\left(w_{1}\right)=4, \quad \operatorname{ord}\left(w_{2}\right)=4, \quad \text { ord }\left(w_{3}\right)=3, \quad\left(w_{1}\right)^{2}=\left(w_{2}\right)^{2}=t_{3}^{3} N_{1}=\beta^{9} \\
& \begin{aligned}
w_{2} w_{1} w_{2}^{-1} & =\left(t_{2} t_{3}^{2}\right)\left(t_{1} t_{3}^{2}\right)\left(t_{2} t_{3}^{2}\right)^{-1} N_{1}=\left(t_{1} t_{2} t_{3}^{3}\right) t_{2}^{-1} t_{3}^{2} N_{1}=\left(t_{1} t_{3}^{5}\right) N_{1} \\
& =\left(t_{1} t_{3}^{5}\right)\left(t_{1}^{2} t_{3}\right) N_{1}=w_{1}^{3}
\end{aligned}
\end{aligned}
$$

we conclude that

$$
\begin{aligned}
F_{1}= & \pi_{6,1} / N_{1}=\left(\Gamma_{2} / N_{1}\right) \tilde{\times} \mathbb{Z}_{3} \cong\left(C_{3} \times Q_{8}\right) \tilde{\times} \mathbb{Z}_{3} \\
= & \left\langle w_{1}, w_{2}, w_{3}, \beta\right| w_{2}^{4}=w_{3}^{3}=1, w_{1}^{2}=w_{2}^{2}=\beta^{9}, \beta^{6}=w_{3}, w_{2} w_{1} w_{2}^{-1}=w_{1}^{-1} \\
& \left.\beta w_{1} \beta^{-1}=w_{2}, \beta w_{2} \beta^{-1}=w_{1}^{-1} w_{2}^{-1}, w_{1} w_{3}=w_{3} w_{1}, w_{2} w_{3}=w_{3} w_{2}\right\rangle \\
\cong & Q_{8} \rtimes C_{9} .
\end{aligned}
$$

It is not hard to get the results for the other cases.

The following proposition is a working criterion for affine conjugacy among normal nilpotent subgroups of π_{7}.

Proposition 3.10 ([10, Proposition 3.19]). Let $N_{j}(j=1,2,3,4)$ be a normal nilpotent subgroup of $\pi_{7, i}(i=1,2,3,4)$ in Lemma 3.2 and isomorphic to Γ_{p}. Then we have the following:
(1) $N_{2} \sim N_{3}$ if and only if $m=0, d_{1}=d_{2}$.
(2) $N_{1} \nsim N_{2}, \quad N_{1} \nsim N_{3}, \quad N_{1} \nsim N_{4}, \quad N_{2} \nsim N_{4}, \quad N_{3} \nsim N_{4}$.

Theorem 3.11. ($\pi_{7, i}$) Suppose F is a finite nonabelian group acting freely on \mathcal{N}_{2} which yields an orbit manifold homeomorphic to $\mathcal{H} / \pi_{7, i}$. Then F is isomorphic to the $Q_{8} . C_{36}$ (the non-split extension by Q_{8} of C_{36} acting via $C_{36} / C_{12}=C_{3}$) in the case $\pi_{7,1}$ and $\pi_{7,3}, C_{16} . A_{4}$ (the central extension by C_{16} of A_{4}) in the case $\pi_{7,2}$, and $C_{8} . A_{4}$ (the central extension by C_{8} of A_{4}) in the case $\pi_{7,4}$.

Proof. Note that when $n=1$, we have
$\pi_{7,1}=\left\langle t_{1}, t_{2}, t_{3}, \alpha \mid\left[t_{2}, t_{1}\right]=t_{3}^{6}, \alpha t_{1} \alpha^{-1}=t_{1} t_{2}, \alpha t_{2} \alpha^{-1}=t_{1}^{-1}, \alpha^{6}=t_{3}\right\rangle$.
Let N be a normal nilpotent subgroup of $\pi_{7,1}$ which is isomorphic to Γ_{2}. Then by Lemma 3.2, N can be represented by one of the following sets of generators,
$N_{1}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}}, t_{3}^{3 d_{1} d_{2}}\right\rangle, \quad N_{2}=\left\langle t_{1}^{d_{1}} t_{2}^{m}, t_{2}^{d_{2}} t_{3}^{\frac{3 d_{1} d_{2}}{2}}, t_{3}^{3 d_{1} d_{2}}\right\rangle$,
$N_{3}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{3 d_{1} d_{2}}{2}}, t_{2}^{d_{2}}, t_{3}^{3 d_{1} d_{2}}\right\rangle, \quad N_{4}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\frac{3 d_{1} d_{2}}{2}}, t_{2}^{d_{2}} t_{3}^{\frac{3 d_{1} d_{2}}{2}}, t_{3}^{3 d_{1} d_{2}}\right\rangle$,
where d_{1}, d_{2} are divisors of $p=2 ; \quad \frac{d_{1}}{d_{2}}+\frac{m\left(m-d_{1}\right)}{d_{1} d_{2}} \in \mathbb{Z}$ and d_{1} is a common divisor of m and d_{2}. From these relations, there are two possibilities.
(i) When $d_{1}=d_{2}=1: m=0$. Since $\frac{3 d_{1} d_{2}}{2}=\frac{3}{2} \notin \mathbb{Z}, N_{2}, N_{3}, N_{4}$ do not occur. Thus we have only one normal nilpotent subgroup $N_{1}=$ $\left\langle t_{1}, t_{2}, t_{3}^{3}\right\rangle$ and $\pi_{7,1} / N_{1}=\langle\alpha N\rangle \cong \mathbb{Z}_{18}$.
(ii) When $d_{1}=d_{2}=2: m=0$. Since N_{2} is affinely conjugate to N_{3} by Proposition 3.10, there exist three possible normal nilpotent subgroups: $N_{1}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{12}\right\rangle, \quad N_{2}=\left\langle t_{1}^{2}, t_{2}^{2} t_{3}^{6}, t_{3}^{12}\right\rangle, \quad N_{4}=\left\langle t_{1}^{2} t_{3}^{6}, t_{2}^{2} t_{3}^{6}, t_{3}^{12}\right\rangle$. From the following relations

$$
\begin{aligned}
& \alpha\left(t_{1}^{2}\right) \alpha^{-1}=t_{1} t_{2} t_{1} t_{2}=t_{1}^{2} t_{2}^{2} t_{3}^{6} \notin N_{1}, \quad \alpha\left(t_{2}^{2} t_{3}^{6}\right) \alpha^{-1}=t_{1}^{-2} t_{3}^{6} \notin N_{2} \\
& \alpha\left(t_{1}^{2} t_{3}^{6}\right) \alpha^{-1}=t_{1}^{2} t_{2}^{2} t_{3}^{12}=t_{1}^{2} t_{3}^{6} t_{2}^{2} t_{3}^{6} \in N_{4} \\
& \alpha\left(t_{2}^{2} t_{3}^{6}\right) \alpha^{-1}=t_{1}^{-2} t_{3}^{6}=\left(t_{1}^{2} t_{3}^{6}\right)^{-1} t_{3}^{12} \in N_{4}
\end{aligned}
$$

we can conclude that there exists only one normal nilpotent subgroup N_{4} of $\pi_{7,1}$. Since $N_{4} \nsupseteq\left[\pi_{7,1}, \pi_{7,1}\right]=\left\langle t_{1}, t_{2}, t_{3}^{6}\right\rangle$, we know that $\pi_{7,1} / N_{4}$ is nonabelian.

Let $w_{1}=t_{1} N_{4}, w_{2}=t_{2} N_{4}, w_{3}=t_{3} N_{4}$, and $\beta=\alpha N_{4}$. Since $\operatorname{ord}\left(w_{1}\right)=4, \quad \operatorname{ord}\left(w_{2}\right)=4, \quad \operatorname{ord}\left(w_{3}\right)=12, \quad\left(w_{1}\right)^{2}=\left(w_{2}\right)^{2}=\left(w_{3}\right)^{6}$, $w_{2} w_{1} w_{2}^{-1}=\left(t_{2} t_{1} t_{2}^{-1}\right) N_{4}=\left(t_{1} t_{2} t_{3}^{6}\right) t_{2}^{-1} N_{4}=\left(t_{1} t_{3}^{6}\right) N_{4}=\left(t_{1} N_{4}\right)\left(t_{1} N_{4}\right)^{2}$

$$
=w_{1}^{3}=w_{1}^{-1}
$$

we can obtain that

$$
\begin{aligned}
F= & \pi_{7,1} / N_{4} \\
= & \left\langle w_{1}, w_{2}, w_{3}, \beta\right| w_{1}^{4}=w_{3}^{12}=1, w_{1}^{2}=w_{2}^{2}=w_{3}^{6}, \quad \beta^{6}=w_{3}, \quad w_{2} w_{1} w_{2}=w_{1}^{-1} \\
& \left.\quad \beta w_{1} \beta^{-1}=w_{1} w_{2}, \beta w_{2} \beta^{-1}=w_{1}^{-1}, w_{1} w_{3}=w_{3} w_{1}, w_{2} w_{3}=w_{3} w_{2}\right\rangle \\
\cong & Q_{8} \cdot C_{36}
\end{aligned}
$$

where $Q_{8} . C_{36}$ is the non-split extension by Q_{8} of C_{36} acting via $C_{36} / C_{12}=$ C_{3}.

The other cases can be obtained similarly.
We can obtain the following corollary by summarizing the results from Theorem 3.1 through Theorem 3.11 and using the results in [9]. In $[1,2,3]$, finite groups acting freely on the nilmanifold \mathcal{N}_{p} are abelian. However, as we can see in the following corollary if a finite group acts freely on \mathcal{N}_{2} with $n=1$, there exist nonabelian groups which yield orbit manifolds homeomorphic to \mathcal{N} / π_{i} for all i.

Corollary 3.12. The following table gives a complete list of all free actions(up to topological conjugacy) of finite groups G on \mathcal{N}_{2} which yield an orbit manifold homeomorphic to \mathcal{H} / π.

π	$G=\pi / N$	AC classes of normal nilpotent subgroups N	Group type
π_{1}	\mathbb{Z}_{2}	$N=\left\langle t_{1}, t_{2}^{2}, t_{3}\right\rangle$	abelian
	D_{4}	$N_{1}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{2}\right\rangle$	nonabelian
	D_{4}	$N_{2}=\left\langle t_{1}^{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$	nonabelian
	Q_{8}	\mathbb{Z}_{2}	$N_{3}=\left\langle t_{1}^{2} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$
	$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$N=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$	nonabelian
	Q_{8}	$N_{1}=\left\langle t_{1}^{2}, t_{2}, t_{3}^{2}\right\rangle$	abelian
	$C_{8} \circ D_{4}$	$N_{2}=\left\langle t_{1}^{2} t_{3}, t_{2}, t_{3}^{2}\right\rangle$	nonabelian

π	$G=\pi / N$	AC classes of normal nilpotent subgroups N	Group type
π_{3}	\mathbb{Z}_{2}	$N=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$	abelian
	D_{4}	$N_{1}=\left\langle t_{1}, t_{2}^{2}, t_{3}^{2}\right\rangle$	nonabelian
	$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$N_{2}=\left\langle t_{1}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$	abelian
	\mathbb{Z}_{8}	$N_{3}=\left\langle t_{1} t_{2}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$	abelian
π_{4}	D_{4}	$N=\left\langle t_{1}, t_{2}, t_{3}^{2}\right\rangle$	nonabelian
	$\mathbb{Z}_{2} \times \mathbb{Z}_{4}$	$N_{1}=\left\langle t_{1}, t_{2} t_{3}, t_{3}^{2}\right\rangle$	abelian
	Q8	$N_{2}=\left\langle t_{1} t_{3}, t_{2} t_{3}, t_{3}^{2}\right\rangle$	nonabelian
	$C_{8} . C_{4}$	$N_{3}=\left\langle t_{1} t_{2}, t_{2}^{2} t_{3}^{2}, t_{3}^{4}\right\rangle$	nonabelian
$\pi_{5,1}$	\mathbb{Z}_{4}	$N=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$	abelian
	$\mathbb{Z}_{2} \times \mathbb{Z}_{8}$	$N_{1}=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{2}\right\rangle$	abelian
	M_{16}	$N_{2}=\left\langle t_{1} t_{2} t_{3}, t_{2}^{2}, t_{3}^{2}\right\rangle$	nonabelian
	$D_{4} . C_{8}$	$N_{3}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$	nonabelian
$\pi_{5,2}$	\mathbb{Z}_{8}	$N=\left\langle t_{1}, t_{2}, t_{3}^{2}\right\rangle$	abelian
	\mathbb{Z}_{8}	$N_{1}=\left\langle t_{1} t_{3}, t_{2} t_{3}, t_{3}^{2}\right\rangle$	abelian
	$\mathbb{Z}_{2} \times \mathbb{Z}_{16}$	$N_{2}=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$	abelian
	M_{32}	$N_{3}=\left\langle t_{1} t_{2} t_{3}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$	nonabelian
	$D_{4} \cdot C_{16}$	$N_{4}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{8}\right\rangle$	nonabelian
$\pi_{5,3}$	\mathbb{Z}_{8}	$N=\left\langle t_{1}, t_{2}, t_{3}^{2}\right\rangle$	abelian
	\mathbb{Z}_{8}	$N_{1}=\left\langle t_{1} t_{3}, t_{2} t_{3}, t_{3}^{2}\right\rangle$	abelian
	$\mathbb{Z}_{2} \times \mathbb{Z}_{16}$	$N_{2}=\left\langle t_{1} t_{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$	abelian
	M_{32}	$N_{3}=\left\langle t_{1} t_{2} t_{3}^{2}, t_{2}^{2}, t_{3}^{4}\right\rangle$	nonabelian
	$D_{4} \cdot C_{16}$	$N_{4}=\left\langle t_{1}^{2}, t_{2}^{2}, t_{3}^{8}\right\rangle$	nonabelian
$\pi_{6,1}$	$Q_{8} \rtimes C_{9}$	$N_{1}=\left\langle t_{1}^{2} t_{3}, t_{2}^{2} t_{3}, t_{3}^{6}\right\rangle$	nonabelian
$\pi_{6,2}$	$Q_{8} \rtimes C_{9}$	$N_{1}=\left\langle t_{1}^{2} t_{3}, t_{2}^{2} t_{3}, t_{3}^{6}\right\rangle$	nonabelian
$\pi_{6,3}$	$S L_{2}\left(\mathbb{F}_{3}\right)$	$N_{1}=\left\langle t_{1}^{2} t_{3}, t_{2}^{2} t_{3}, t_{3}^{2}\right\rangle$	nonabelian
$\pi_{6,4}$	\mathbb{Z}_{3}	$N=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$	abelian
	$C_{4} \cdot A_{4}$	$N_{1}=\left\langle t_{1}^{2} t_{3}^{2}, t_{2}^{2} t_{3}^{2}, t_{3}^{4}\right\rangle$	nonabelian
$\pi_{7,1}$	\mathbb{Z}_{18}	$N=\left\langle t_{1}, t_{2}, t_{3}^{3}\right\rangle$	abelian
	$Q_{8} . C_{36}$	$N_{1}=\left\langle t_{1}^{2} t_{3}^{6}, t_{2}^{2} t_{3}^{6}, t_{3}^{12}\right\rangle$	nonabelian
$\pi_{7,2}$	\mathbb{Z}_{12}	$N=\left\langle t_{1}, t_{2}, t_{3}^{2}\right\rangle$	abelian
	$C_{16} . A_{4}$	$N_{1}=\left\langle t_{1}^{2} t_{3}^{4}, t_{2}^{2} t_{3}^{4}, t_{3}^{8}\right\rangle$	nonabelian
$\pi_{7,3}$	\mathbb{Z}_{18}	$N=\left\langle t_{1}, t_{2}, t_{3}^{3}\right\rangle$	abelian
	$Q_{8} . C_{36}$	$N_{1}=\left\langle t_{1}^{2} t_{3}^{6}, t_{2}^{2} t_{3}^{6}, t_{3}^{12}\right\rangle$	nonabelian
$\pi_{7,4}$	\mathbb{Z}_{6}	$N=\left\langle t_{1}, t_{2}, t_{3}\right\rangle$	abelian
	$C_{8} . A_{4}$	$N_{1}=\left\langle t_{1}^{2} t_{3}^{2}, t_{2}^{2} t_{3}^{2}, t_{3}^{4}\right\rangle$	nonabelian

Example 3.13. Let G be a finite group of order 32 acting freely on \mathcal{N}_{2}. Then G is one of the following four groups:
$\mathbb{Z}_{2} \times \mathbb{Z}_{16}$, modular group M_{32}, central product $C_{8} \circ D_{4}, 1^{\text {st }}$ non-split extension $C_{8} . C_{4}$.
In each case, non-affinely conjugate actions are as follows.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{16}$: one in $\pi_{5, i}(i=2,3)$
- M_{32} : one in $\pi_{5, i}(i=2,3)$
- $C_{8} \circ D_{4}$: one in π_{2}
- $C_{8} . C_{4}$: one in π_{4}.

References

[1] D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 42 (2005), no. 4, 795-826.
[2] D. Choi and J. K. Shin, Corrigendum to "Free actions of finite abelian groups on 3-dimensional nilmanifolds" [J. Korean Math. Soc. 42(4) (2005), 795-826], to appear in J. Korean Math. Soc., 56 (2019), no. 1, 285-287.
[3] H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl., 144 (2004), 255-270.
[4] K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3dimensional manifolds with nil-geometry, Quarterly J. Math. Oxford, 46 (1995), no. 2, 141-167.
[5] K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl., 121 (2002), no. 3, 469-507.
[6] W. Heil, On P^{2}-irreducible 3-manifolds, Bull. Amer. Math. Soc., 75 (1969), 772-775.
[7] W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J., 20 (1973), 217-223.
[8] J. Hempel, Free cyclic actions of $S^{1} \times S^{1} \times S^{1}$ Proc. Amer. Math. Soc., 48 (1975), no. 1, 221-227.
[9] D. H. Koo, T. Lee, and J. K. Shin, nonabelian group actions on 3-dimensional nilmanifolds reversing fiber orientation, J. Chungcheong Math. Soc., 31 (2018), no. 4, 475-486.
[10] D. H. Koo, M. S. Oh, and J. K. Shin, Classification of free actions of finite groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 54 (2017), no. 5, 1411-1440.
[11] K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl., 53 (1993), 153-175.
[12] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), no. 2, 56-88.
[13] S. Wolfram, Mathematica, Wolfram Research, 1993.
*
Cheonan Wolbong Middle School
Cheonan 31169, Republic of Korea
E-mail: rano153@naver.com
**
Daejeon Science High School for the Gifted
Daejeon 34142, Republic of Korea
E-mail: pi3014@hanmail.net

Department of Mathematics Education
Chungnam National University
Daejeon 34134, Republic of Korea
E-mail: jkshin@cnu.ac.kr

[^0]: Received July 28, 2019; Accepted August 14, 2019.
 2010 Mathematics Subject Classification: Primary 57S25; Secondary 57M05, 57S17.

 Key words and phrases: affine conjugacy, almost Bieberbach group, group action, Heisenberg group.
 *** The corresponding author.

