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GLOBAL GENERALIZED CROSS VALIDATION IN THE

PRECONDITIONED GL-LSQR

Seiyoung Chung*, SeYoung Oh**, and SunJoo Kwon***

Abstract. This paper present the global generalized cross valida-
tion as the appropriate choice of the regularization parameter in
the preconditioned Gl-LSQR method in solving image deblurring
problems. The regularization parameter, chosen from the global
generalized cross validation, with preconditioned Gl-LSQR method
can give better reconstructions of the true image than other param-
eters considered in this study.

1. Introduction

Regularized deblurring problems in the imaging system are often
modeled as a linear least squares problem:

(1.1) min
x

(‖Hx− b‖22 + λ2 ‖x‖22),

where HM×N (M ≥ N) is a blurring ill-conditioned matrix with some
block structures, b and x represent the observed and the original image
respectively. An appropriate choice of the regularization parameter λ is
important thing to do in the regularization process. There are various
techniques to choose the approximate regularization parameters such as
Morozov’s discrepancy principle, L-curve criterion, and generalized cross
valication(GCV)[2, 3, 4]. Especially the GCV method is prominent for
the selection of the crucial regularization parameters since GCV has
good asymptotic properties for large number of noisy data.

Since the implementations of image restoration problems typically
require the need of formidable data, we generalized the problem (1.1) to
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the following minimization problem with respect to the Frobenius norm

(1.2) min
X
{‖HX −B‖2F + λ2 ‖X‖2F },

where BN×s(N � s) is a collection of the column stacking of each small
blocks obtained from partitioning the blurred and noisy image ([1, 6]).

In [1], it was shown that the global least squares(Gl-LSQR) method
can be applied to image restoration problems (1.2). In [7], the global
generalized cross validation(GCV) method for the problem (1.2) was
suggested and it was proved that the preconditioned Gl-CGLS method
with the global GCV for large image restoration problems is stable since
the choice of regularization parameter from the global GCV has results
in the better performances.

To solve image deblurring problems this pager suggests Gl-LSQR
method with the global GCV for the appropriate choice of the regular-
ization parameter in (1.2).

The outline of this paper follows. The brief description of the Gl-
LSQR method for the problem (1.2) is summarized in Section 2. In Sec-
tion 3, we present an appropriate generalized cross validation to (1.2)
with Gl-LSQR method for solving image deblurring problems. Numeri-
cal experiments and final remarks are described in Section 4.

2. Global least squares procedure

The global least squares (Gl-LSQR) method is a method for solving
linear system with multiple right hand sides,

(2.1) HX = B,

where B and X are n × s matrices([8]). This section summarizes the
concept of the Gl-LSQR algorithm.

Frobenius norm is defined by ‖X‖F =
√
〈X,X〉F , where 〈X,Y 〉F

denotes the trace of the square matrix XTY for two n × s matrices X
and Y . If some n × s block vectors V1, V2, . . . are orthonormal with
respect to < · , · >F , then V1, V2, . . . becomes F-orthonormal basis.

The two sets of k number of of the n× s block vectors V1, V2, . . . , Vk
and U1, U2, . . . , Uk which are two F -orthonormal basis of Rn×ks can
be constructed as the following global bidiagonalization with starting
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matrix B:

β1U1 = B, α1V1 = HTU1

βi+1Ui+1 = HVi − αiUi, (i = 1, 2, . . . , k)

αi+1Vi+1 = HTUi+1 − βi+1Vi, (i = 1, 2, . . . , k)

(2.2)

where αi ≥ 0 and βi ≥ 0 are chosen so that ‖Ui‖F = ‖Vi‖F = 1.

Set Vk ≡
[
V1 V2 . . . Vk

]
, Uk ≡

[
U1 U2 . . . Uk

]
and a lower

bidiagonal matrix

(2.3) Tk ≡


α1

β2 α2

. . .
. . .

βk αk
βk+1

 .

Define Vk ∗ t =
∑k

j=1 Vjtj , (t ∈ Rk). Then the recurrence formula (2.2)
of the global bidiagonalization can be rewritten as

Uk+1 ∗ (β1e1) = B,HVk = Uk+1 ∗ Tk,
HTUk+1 = Vk ∗ T Tk + αk+1Vk+1 ∗ eTk+1,

(2.4)

where ei is the ith column of identity matrix.

The form of an approximate solution Xk at iteration k is Xk = Vk ∗
yk, (yk ∈ Rk) and the corresponding residual matrix of the equation (2.1)
is

Rk = β1U1 − (Uk+1 ∗ Tk) ∗ yk = Uk+1 ∗ (β1e1 − Tkyk).

The global LSQR algorithm chooses the vector yk which minimizes
‖Rk‖F ,

(2.5) min ‖Rk‖F = min
yk∈Rk

‖β1e1 − Tkyk‖2 .

The QR factorization of Tk induces

Q
[
Tk β1e1

]
=

[
Rk fk
0 φ̄k+1

]
,

where the matrix Q is a product Gk,k+1Gk−1,k · · ·G1,2 of Gi,i+1, i =
k, k − 1, · · · , 1 chosen to eliminate the subdiagonal element β2, . . . βk+1
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of Tk and

Rk =


ρ1 θ2

ρ2 θ3

. . .
. . .

ρk−1 θk
ρk

 and fk =


φ1

φ2
...

φk−1

φk

 .
From Rkyk = fk, the solution yk of (2.5) can be obtained. Then an
approximate solution is formed as

Xk = Vk ∗ yk = Vk ∗ (R−1
k ∗ fk) = (Vk ∗R−1

k ) ∗ fk.

Setting Pk ≡ Vk ∗R−1
k ≡

[
P1 P2 . . . Pk

]
, the approximate solution

Xk = Pk ∗ fk = Xk−1 + Pkφk with the initial guess P0 = X0 = O. The
last block column Pk of Pk can be updated by

Pk = (Vk − Pk−1θk)ρ
−1
k

where fk =

[
fk−1

φk

]
and φk = ckφ̄k. Thus the matrix residual norm

‖Rk‖F is equal to |φ̄k+1|.

3. Gl-LSQR with the global GCV

This section presents to use Gl-LSQR method with the global GCV
for the problem (1.2). The best way to solve (1.2) numerically is to treat
it as a minimization problem

Xλ = arg min
X

∥∥∥∥( H
λI

)
X −

(
B
O

)∥∥∥∥
F

.(3.1)

The parameter λ acts on the smoothness of the solution. A generaliza-
tion of the cross validation for the problem (1.2) can define the following
global GCV funtion.

Definition 3.1. Using the normal equations for (3.1)

(HTH + λ2I)X = HTB,

the regularization solution is written by Xλ = (HTH + λ2I)−1HTB.
Then the global GCV function is defined by

(3.2) Gglobal(λ) =
‖HXλ −B‖2F

[trace(I −H(HTH + λ2I)−1HT )]2
.
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In particular, when the reflective boundary conditions are used, H
can be diagonalized by the orthogonal two-dimensional discrete cosine
transform matrix and thus the follows can be obtained.

Lemma 3.2. If {ηi, i = 1, ..., N} represents the spectrum of H, we
can rewrite Gglobal(λ) as

(3.3) Gglobal(λ) =

s∑
j=1

N∑
i=1

(
1

η2i+λ2
[CBj ]i

)2

(
N∑
i=1

1
η2i+λ2

)2 ,

where Bj is the j-th column of B.

Proof. From a unitary spectral decomposition H = CTΛHC (ΛH =
diag(η1, η2, . . . , ηN )),

HXλ −B = C(ΛH(Λ2
H + λ2I)−1ΛH − I)CTB.

Then direct caculation yields ‖Hxλ −B‖2F =
s∑
j=1

N∑
i=1

(
λ2[CBj ]i
η2i+λ2

)2
and

trace(I − H(HTH + λ2I)−1HT ) =

(
N∑
i=1

λ2

η2i+λ2

)
. Substitute the two

expresions into (3.2) to obtain (3.3).

Now we want to find a regularization parameter λgGCV . In other
words, the following constrained optimization problem can be solved

min
λ

Gglobal(λ) subject to η1 ≤ λ ≤ ηN ,(3.4)

where η1 is the smallest eigenvalue of H and ηN is the largest eigenvalue
of H to get an appropriate parameter λ that gives the least squares
solution Xλ. The problem (3.1) is restated by

min
X

∥∥∥∥( H
λgGCV I

)
X −

(
B
O

)∥∥∥∥
F

.(3.5)

The preconditioned Gl-LSQR algorithm solves (3.5) by transforming the
problem with a preconditioner Ω,

(3.6) min
Y

∥∥∥ĤΩ−1Y − B̂
∥∥∥
F

with Y = ΩX, where Ĥ =

(
H

λgGCV I

)
and B̂ =

(
B
O

)
.
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Summarizing the above process so far, the algorithm for precondi-
tioned Gl-CGLS with the extended global GCV can be presented as
follows.

Algorithm 1. Preconditioned Gl-LSQR with the global GCV.
1. Find the minimizer λgGCV for the problem:

min
λ
Gglobal(λ) subject to η1 ≤ λ ≤ ηN .

2. Solve (3.6) using preconditioned Gl-LSQR :
i. Set X0 = On×s.

ii. β1 =
∥∥∥B̂∥∥∥

F
, U1 = B/β1, α1 =

∥∥∥ĤTU1

∥∥∥
F
, V1 = ĤTU1/α1.

iii. Set W1 = V1, φ̄1 = β1, ρ̄1 = α1.

iv. For k=1, 2, . . .

(i) $k = ĤVk − αkUk, βk+1 = ‖$k‖F , Uk+1 = $k/βk+1

(ii) τk = ĤTUk+1 − βk+1Vk, αk+1 = ‖τk‖F , Vk+1 = τk/αk+1

(iii) ρk = (ρ̄2 + β2
k+1)1/2, ck = ρ̄k/ρk, sk = βk+1/ρk

(iv) θk+1 = skαk+1, ρ̄k+1 = ckαk+1

(v) φk = ckφ̄k, φ̄k+1 = −skφ̄k
(vi) Xk = Xk−1 + (φk/ρk)Wk

(vii) Wk+1 = Vk−1 − (θk+1/ρk)Wk

(viii) If |φ̄k+1| is small enough, then stop.

4. Numerical experiments

Employing the global GCV in Gl-LSQR method for solving image
restoration problems with two test images, we investigated numerical
results to illustrate the effectiveness of the regularization parameters
chosen from the minimization of the global GCV function. For compar-
ison purposes, various possible regularization parameters chosen exper-
imentally by attempting to minimize the relative accuracy are used in
each test.

Our two test images (128-by-128) are degraded by Gaussian blur
with adding Gaussian noises. Using reflective boundary condition, these
images are divided into the collection of 64 small block images with the
sizes of 16-by-16 respectively.

Table 1 presents the performance results of the preconditioned Gl-
LSQR method with regularization parameters chosen from both of the
global GCV and the numerical experiments having the relative accuracy

as small as possible. The relative error
‖X∗−X̂‖
‖X∗‖ shows how well the

true image has been approximated. The peak-to-signal ratio(PSNR) is

defined as 10 log10

(
2552

1
mn

∑
i,j(x

∗
i,j−x̂i,j)2

)
, where x∗i,j and x̂i,j denote the

pixel value of the original image and restored image respectively.
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Table 1

Regularization Test Relative PSNR
parameter image error

global GCV I 0.002336 57.8466
λ = 0.05 I 0.002946 55.8319
λ = 0.1 I 0.003386 54.6220
λ = 0.8 I 0.003788 53.6467

global GCV II 0.018308 38.3272
λ = 0.05 II 0.037062 32.2017
λ = 0.1 II 0.040806 31.3658
λ = 0.8 II 0.043520 30.8065

In the preconditioned Gl-LSQR, the determination of regularization
parameter by using the global GCV is more efficient than by the other
choices of λ from the perspective of smaller relative error and a larger
PSNR. The reconstructed image for test image (II) by preconditioned
Gl-LSQR with the global GCV is given in Figure 1(c).

(a) (b) (c)

Figure 1. (a) Original (b) Gaussian blur and noisy (c)
Reconstructed images.
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