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A FIXED POINT APPROACH TO THE STABILITY OF

THE QUADRATIC AND CUBIC TYPE FUNCTIONAL

EQUATION

Yang-Hi Lee

Abstract. In this paper, I investigate the stability of the func-
tional equation

f(x + 2y) − 3f(x + y) + 3f(x) − f(x− y) − 3f(y) + 3f(−y) = 0

by using the fixed point theory in the sense of L. Cădariu and V.
Radu.

1. Introduction

In 1940, the problem of stability of group homomorphism was first
raised by S. M. Ulam [9]. In the next year, D. H. Hyers [6] gave a partial
solution to Ulam’s question for the case of additive mappings. Hyers’
result has greatly influenced the study of the stability problem of the
functional equation. His result was generalized by Th. M. Rassias [7]
for linear mappings.

In 2004, L. Cădariu and V. Radu [2] to prove stability theorems of
the Cauchy functional equation:

f(x+ y)− f(x)− f(y) = 0(1.1)

and in 2003, they [1] obtained the stability of the quadratic functional
equation:

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0(1.2)

by using the fixed point method. Throughout this paper, let V be a
(real or complex) linear space and Y a Banach space. We call a solution
f : V → W of (1.1) an additive mapping and call a solution of (1.2 ) a
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quadratic mapping. Notice that a mapping f : V →W is called a cubic
mapping if f is a solution of the cubic functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) = 0.(1.3)

A mapping f is called a quadratic-cubic mapping if f is represented by
sum of a quadratic mapping and a cubic mapping. Now we consider the
functional equation:

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y) = 0(1.4)

which is called the quadratic and cubic type functional equation. The
function f : R→ R defined by f(x) = ax3 + bx2 + c is a solution of this
functional equation, where a, b, c are real constants.

In 2010, W. Towanlong and P. Nakmahachalasint, [8] proved the
stability of the quadratic and cubic type functional equation by handling
the odd part and the even part of the given function f , respectively. In
this paper, instead of splitting the given function f : X → Y into two
parts, we will prove the stability of the functional equation (1.3) at once
by using the fixed point theory and we will show that every quadratic-
cubic mapping is a solution of the functional equation(1.3).

2. Main results

We need the following Margolis and Diaz’s fixed point theorem to
prove the main theorem.

Theorem 2.1. ([4]) Suppose that a complete generalized metric space
(X, d), which means that the metric d may assume infinite values, and
a strictly contractive mapping J : X → X with the Lipschitz constant
0 < L < 1 are given. Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;

(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.
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For a given mapping f : V →W , we use the following abbreviations

fe(x) :=
f(x) + f(−x)

2
, fo(x) :=

f(x)− f(−x)

2
,

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Df(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y)

for all x, y ∈ V . As we stated in the previous section, solutions of Qf ≡
0 and Cf ≡ 0 are called a quadratic mapping and a cubic mapping,
respectively. Now we will show that f is a quadratic-cubic mapping if
f is a solution of the functional equation Df(x, y) = 0 for all x, y ∈ V
with f(0) = 0.

Theorem 2.2. A mapping f : V → W satisfies Df(x, y) = 0 for all
x, y ∈ V with f(0) = 0 if and only if f is a quadratic-cubic mapping.

Proof. If a mapping f : V →W satisfies Df(x, y) = 0 for all x, y ∈ V ,
then Dfo(x, y) = 0 and Dfe(x, y) = 0 for all x, y ∈ V . Therefore the
equalities Cfo(x, y) = Dfo(x, y) and Qfe(x, y) = 0 can be obtained from
Cfo(x, y) = Dfo(x, y) and 12Qfe(x, y) = Dfe(0, x+y)+Dfe(0, x−y)−
Dfe(2x, y) − Dfe(2x,−y) − 4Dfe(y, x) − 4Dfe(−y, x) + 6Def(0, x) for
all x, y ∈ V . So fo is a cubic mapping and fe is a quadratic mapping.
It follows from the equality f = fo + fe that f is a quadratic-cubic
mapping.

Conversely, assume that f is a quadratic-cubic mapping. Then there
are mappings f1 and f2 satisfying the equalities f := f1+f2, Qf1(x, y) =
0, and Cf2(x, y) = 0 for all x, y ∈ V . Since f1 and f2 are quadratic
mapping and cubic mapping, respectively, the equalities f1(x) = f1(−x),
f2(x) = −f2(−x), f1(2x) = 4f1(x), and f2(2x) = 8f2(x) hold for all
x ∈ V . From these equalities, we obtain the equalities

Df1(x, y) = Qf1(x+ y, y)−Qf1(x, y),

Df2(x, y) = Cf2(x, y)

for all x, y ∈ V , which mean that

Df(x, y) = Df1(x, y) +Df2(x, y) = 0

for all x, y ∈ V as we desired.

Lemma 2.3. If f : V → Y is a mapping satisfying the equality
Df(x, y) = 0 for all x, y ∈ V \{0} and f(0) = 0, then Df(x, y) = 0
for all x, y ∈ V
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Proof. Since f(0) = 0, we easily obtain the equalities

Df(0, y) = −Df(y,−y) = 0

for all x ∈ V \{0} and f(x, 0) = 0 for all x ∈ V .

Now we can prove some stability results of the functional equation
(1.3) by using the fixed point theory.

Theorem 2.4. Let ϕ : (V \{0})2 → [0,∞) be a given function. Sup-
pose that the mapping f : V → Y satisfies

(2.1) ‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V \{0}. If there exists a constant 0 < L < 1 such that ϕ
has the property

(2.2) ϕ(2x, 2y) ≤ 4Lϕ(x, y)

for all x, y ∈ V \{0}, then there exists a unique quadratic-cubic mapping
F : V → Y such that

(2.3) ‖f(x)− f(0)− F (x)‖ ≤ 3ψ(x)

16(1− L)

for all x ∈ V \{0}, where ψ(x) := ϕ(x,−x) + ϕ(−x, x). In particular, F
is represented by

(2.4) F (x) = lim
n→∞

(
fe(2

nx)

22n
+
fo(2

nx)

23n

)
for all x ∈ V . Moreover, if 0 < L < 1

4 , ϕ(x, y) is continuous, and
f(0) = 0, then f is itself a quadratic-cubic mapping.

Proof. If we consider the mapping f̃ = f − f(0), then f̃ : V → Y

satisfies f̃(0) = 0 and

‖Df̃(x, y)‖ = ‖Df(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V \{0}. Let S be the set of all mappings g : V → Y with
g(0) = 0 and introduce a generalized metric on S by

d(g, h) = inf{K ∈ R+|‖g(x)− h(x)‖ ≤ Kψ(x) for all x ∈ V \{0}}.
It is easy to show that (S, d) is a generalized complete metric space.
Now we consider the mapping J : S → S, which is defined by

Jg(x) :=
g(2x)− g(−2x)

16
+
g(2x) + g(−2x)

8
for all x ∈ V. Notice

Jng(x) =
g(2nx)− g(−2nx)

2 · 8n
+
g(2nx) + g(−2nx)

2 · 4n
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for all n ∈ N and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary
constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ ≤ 3

16
‖g(2x)− h(2x)‖+

1

16
‖g(−2x)− h(−2x)‖

≤ 1

4
Kψ(2x) ≤ KLψ(x)

for all x ∈ V \{0}, which implies that d(Jg, Jh) ≤ Ld(g, h) for any
g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the
Lipschitz constant L. Moreover, by (2.1), we see that

‖f̃(x)− Jf̃(x)‖ =
1

16
‖ − 3Df(x,−x)−Df(−x, x)‖ ≤ 3

16
ψ(x)

for all x ∈ V \{0}. It means that d(f̃ , Jf̃) ≤ 3
16 <∞ by the definition of

d. Therefore according to Theorem 2.1, the sequence {Jnf̃} converges

to the unique fixed point F : V → Y of J in the set T = {g ∈ S|d(f̃ , g) <
∞}, which is represented by

F (x) = lim
n→∞

( f̃e(2nx)

22n
+
f̃o(2

nx)

23n

)
for all x ∈ V . Notice that

d(f̃ , F ) ≤ 1

1− L
d(f̃ , Jf̃) ≤ 3

16(1− L)

which implies (2.3) and (2.4). By the definitions of F , together with
(2.1) and (2.2), we have that

‖DF (x, y)‖ = lim
n→∞

∥∥∥Df̃o(2nx, 2ny)

8n
+
Df̃e(2

nx, 2ny)

4n

∥∥∥
≤ lim

n→∞

2n + 1

2 · 8n
(ϕ(2nx, 2ny) + ϕ(−2nx,−2ny))

≤ lim
n→∞

(2n + 1)Ln

2 · 2n
(ϕ(x, y) + ϕ(−x,−y)) = 0

for all x, y ∈ V \{0}. By Lemma 2.3, F satisfies DF (x, y) = 0 for all
x, y ∈ V . Notice that if F ′ is another solution of the functional equation

(1.3), then the equality F ′(x)−JF ′(x) = −3DF ′(x,−x)−DF ′(−x,x)
16 = 0 im-

plies that F ′ is a fixed point of J . Hence F is unique mapping satisfying
(2.4).

Moreover, if 0 < L < 1
4 and ϕ is continuous, then

lim
n→∞

ϕ(2nx, 2ny) ≤ lim
n→∞

(4L)nϕ(x, y) = 0
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for all x, y ∈ V \{0}. Since ϕ is continuous, we get

lim
n→∞

ϕ((2na1 + a2)x, (2
nb1 + b2)y)

≤ lim
n→∞

(4L)nϕ

((
a1 +

a2
2n

)
x,

(
b1 +

b2
2n

)
y

)
=0 · ϕ (a1x, b1y) = 0

for all x, y ∈ V \{0} and for any fixed integers a1, a2, b1, b2 with a1, b1 6= 0.
Therefore, we obtain

3‖f(x)− F (x)‖
≤ lim

n→∞
(‖Df((2n + 1)x,−2nx)−DF ((2n + 1)x,−2nx)‖

+ ‖(F − f)((1− 2n)x)‖+ 3‖(F − f)((2n + 1)x)‖
+ ‖(f − F )((2n+1 + 1)x)‖+ 3‖(f − F )(−2nx)‖
+ 3‖(F − f)(2nx)‖)

≤ lim
n→∞

ϕ((2n + 1)x, 2nx) +
3

16(1− L)
lim
n→∞

(
ψ((1− 2n)x)

+ 3ψ((2n + 1)x) + ψ((2n+1 + 1)x) + 3ψ(−2nx) + 3ψ(−2nx)
)

=0

for all x ∈ V \{0}. This completes the proof of this theorem.

We continue our investigation with the next result.

Theorem 2.5. Let ϕ : (V \{0})2 → [0,∞). Suppose that f : V → Y
satisfies the inequality ‖Df(x, y)‖ ≤ ϕ(x, y) for all x, y ∈ V \{0}. If
there exists 0 < L < 1 such that the mapping ϕ has the property

(2.5) Lϕ(2x, 2y) ≥ 8ϕ(x, y)

for all x, y ∈ V \{0}, then there exists a unique quadratic-cubic mapping
F : V → Y such that

(2.6) ‖f(x)− f(0)− F (x)‖ ≤ Lψ(x)

8(1− L)

for all x ∈ V \{0}. In particular, F is represented by

(2.7) F (x) = lim
n→∞

(
8nfo

( x
2n

)
+ 4nfe

( x
2n

))
for all x ∈ V .
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Proof. Let the mapping f̃ and the set (S, d) be as in the proof of
Theorem 2.2. Now we consider the mapping J : S → S defined by

Jg(x) := 8go

(x
2

)
+ 4ge

(x
2

)
for all g ∈ S and x ∈ V . Notice that

Jng(x) = 8ngo

( x
2n

)
+ 4nge

( x
2n

)
and J0g(x) = g(x) for all x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an
arbitrary constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ = 6
∥∥∥g (x

2

)
− h

(x
2

)∥∥∥+ 2
∥∥∥g (−x

2

)
− h

(
−x

2

)∥∥∥
≤ 8Kψ

(x
2

)
≤ LKψ(x)

for all x ∈ V \{0}. So d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S. That is,
J is a strictly contractive self-mapping of S with the Lipschitz constant
L. Also we see that

‖f̃(x)− Jf̃(x)‖ =
∥∥∥−Df̃ (−x

2
,
x

2

)∥∥∥ ≤ψ (x
2

)
≤ L

8
ψ(x)

for all x ∈ V \{0}, which implies that d(f̃ , Jf̃) ≤ L
8 < ∞. Therefore

according to Theorem 2.1, the sequence {Jnf̃} converges to the unique

fixed point F of J in the set T := {g ∈ S|d(f̃ , g) < ∞}, which is
represented by

F (x) = lim
n→∞

8nf̃o

( x
2n

)
+ 4nf̃e

( x
2n

)
for all x ∈ V . Notice that

d(f̃ , F ) ≤ 1

1− L
d(f̃ , Jf̃) ≤ L

8(1− L)

which implies (2.6) and (2.7). From the definition of F (x), (2.1), and
(2.5), we have

‖DF (x, y)‖ = lim
n→∞

∥∥∥8nDf̃o

( x
2n
,
y

2n

)
+ 4nDf̃e

( x
2n
,
y

2n

)∥∥∥
≤ lim

n→∞

8n + 4n

2

(
ϕ
( x

2n
,
y

2n

)
+ ϕ

(
− x

2n
,− y

2n

))
≤ lim

n→∞

(2n + 1)Ln

2 · 2n
(ϕ(x, y) + ϕ(−x,−y)) = 0

for all x, y ∈ V \{0}. By Lemma 2.3, F satisfies DF (x, y) = 0 for all
x, y ∈ V . Notice that if F is a solution of the functional equation (1.3),
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then the equality F (x) − JF (x) = −DF
(
−x

2 ,
x
2

)
implies that F is a

fixed point of J .

Remark 2.6. In Theorem 2.4 and Theorem 2.4, if ϕ satisfies the
equality ϕ(x, y) = ϕ(−x,−y) for all x, y ∈ V \{0}, the inequalities (2.3)
and (2.6) can be replaced by

‖f(x)− F (x)‖ ≤ ϕ(x,−x)

4(1− L)
and ‖f(x)− F (x)‖ ≤ Lϕ(x,−x)

8(1− L)

for all x ∈ V \{0}, respectively.

Since the equality

Df(0, x) = −Df(x,−x)

holds for all x ∈ V , we can easily prove the following theorems by using
the same method in the proofs of the above theorems.

Theorem 2.7. Let ϕ : V 2 → [0,∞) be a given function. Suppose
that the mapping f : V → Y satisfies (2.1) for all x, y ∈ V . If there
exists a constant 0 < L < 1 such that ϕ has the property (2.2) for all
x, y ∈ V , then there exists a unique quadratic-cubic mapping F : V → Y
such that

(2.8) ‖f(x)− f(0)− F (x)‖ ≤ 3(ϕ(0,−x) + ϕ(0, x))

16(1− L)

for all x ∈ V . In particular, F is represented by (2.4) for all x ∈ V .

Theorem 2.8. Let ϕ : V 2 → [0,∞). Suppose that f : V → Y
satisfies the inequality (2.1) for all x, y ∈ V . If there exists 0 < L < 1
such that the mapping ϕ has the property (2.5) for all x, y ∈ V , then
there exists a unique quadratic-cubic mapping F : V → Y such that

‖f(x)− f(0)− F (x)‖ ≤ L

8(1− L)
(ϕ(0,−x) + ϕ(0, x))

for all x ∈ V . In particular, F is represented by (2.7) for all x ∈ V .

3. Applications

For a given mapping f : V → Y , we use the following abbreviations

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2f(y)
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for all x, y ∈ V . Using Theorem 2.4 and Theorem 2.5, we will show
the stability results of the cubic functional equation Cf ≡ 0 and the
quadratic functional equation Qf ≡ 0 in the following corollaries.

Corollary 3.1. Let fi : V → Y, i = 1, 2, be functions for which
there exist functions φi : V 2 → [0,∞), i = 1, 2, such that

‖Cfi(x, y)‖ ≤ φi(x, y)(3.1)

for all x, y ∈ V . If fi(0) = 0, i = 1, 2, and there exists 0 < L < 1 such
that

φ1(2x, 2y) ≤ 4Lφ1(x, y) and Lφ2(2x, 2y) ≥ 8φ2(x, y)(3.2)

for all x, y ∈ V , then there exist unique cubic mappings Fi : V → Y, i =
1, 2, such that

‖f1(x)− F1(x)‖ ≤ 3(φ1(x,−x) + φ1(−x, x) + φ1(0, x) + φ1(0,−x))

32(1− L)
,

(3.3)

‖f2(x)− F2(x)‖ ≤ L(φ2(x,−x) + φ2(−x, x) + φ2(0, x) + φ2(0,−x))

16(1− L)

for all x ∈ V . In particular, the mappings Fi, i = 1, 2, are represented
by

F1(x) = lim
n→∞

f1(2
nx)

8n
and F2(x) = lim

n→∞
8nf2

( x
2n

)
(3.4)

for all x ∈ V .

Proof. Notice that

Dfi(x, y) =
1

2
Cfi(x, y)− 1

2
Cfi(x+ y,−y)

for all x, y ∈ V and i = 1, 2. Put

ϕi(x, y) :=
1

2
φi(x, y) +

1

2
φi(x+ y,−y)

for all x, y ∈ V and i = 1, 2, then ϕ1 satisfies (2.2) and ϕ2 satisfies (2.5).
Therefore ‖Dfi(x, y)‖ ≤ ϕi(x, y) for all x, y ∈ V and i = 1, 2. According
to Theorem 2.4, there exists a unique mapping F1 : V → Y satisfying
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(3.3), which is represented by (2.4). Observe that, by (3.1) and (3.2),

lim
n→∞

∥∥∥∥f1e(2nx)

4n

∥∥∥∥ = lim
n→∞

1

3 · 4n+1
‖Cf1(2nx,−2nx) + Cf1(0, 2

nx)‖

≤ lim
n→∞

1

3 · 4n+1
(φ1(2

nx,−2nx) + φ1(0,−2nx))

≤ lim
n→∞

Ln

12
(φ1(x,−x) + φ1(0,−x)) = 0

as well as limn→∞
∥∥f1(2nx)+f1(−2nx)

2·8n
∥∥ = 0 for all x ∈ V . From this and

(2.4), we get (3.4). Moreover, we have∥∥∥∥Cf1(2nx, 2ny)

8n

∥∥∥∥ ≤ φ1(2
nx, 2ny)

8n
≤ Ln

2n
φ1(x, y)

for all x, y ∈ V . Taking the limit as n→∞ in the above inequality, we
get CF1(x, y) = 0 for all x, y ∈ V .

On the other hand, according to Theorem 2.5, there exists a unique
mapping F2 : V → Y satisfying (3.3) which is represented by (2.7).
Observe that, by (3.1) and (3.2),

lim
n→∞

23n
∥∥∥f2e ( x2n)∥∥∥ = lim

n→∞

23n

12

∥∥∥Cf2 ( x
2n
,− x

2n

)
+ Cf2

(
0,
x

2n

)∥∥∥
≤ lim

n→∞

23n

12

(
φ2

( x
2n
,− x

2n

)
+ φ2

(
0,
x

2n

))
≤ lim

n→∞

Ln

12
(φ2(x,−x) + φ2(0, x)) = 0

as well as limn→∞ 22n
∥∥f2e ( x

2n

) ∥∥ = 0 for all x ∈ V . From these and
(2.7), we get (3.4). Moreover, we have∥∥∥23nCf2

( x
2n
,
y

2n

)∥∥∥ ≤ 23nφ2

( x
2n
,
y

2n

)
≤ Lnφ2(x, y)

for all x, y ∈ V . Taking the limit as n→∞ in the above inequality, we
get CF2(x, y) = 0 for all x, y ∈ V .

Corollary 3.2. Let fi : V → Y, i = 1, 2, be functions for which
there exist functions φi : V 2 → [0,∞), i = 1, 2, such that

‖Qfi(x, y)‖ ≤ φi(x, y)

for all x, y ∈ V . If fi(0) = 0, i = 1, 2, and there exists 0 < L < 1 such
that the mapping φ1 and φ2satisfy (3.2) for all x, y ∈ V , then there exist
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unique quadratic mappings Fi : V → Y, i = 1, 2, such that

‖f1(x)− F1(x)‖ ≤3(φ1(x, x) + φ1(−x,−x) + 2φ1(0, x) + 2φ1(0,−x))

16(1− L)
,

(3.5)

‖f2(x)− F2(x)‖ ≤L(φ2(x, x) + φ2(−x,−x) + 2φ2(0, x) + 2φ2(0,−x))

8(1− L)

for all x ∈ V . In particular, the mappings Fi, i = 1, 2, are represented
by

F1(x) = lim
n→∞

f1(2
nx)

4n
and F2(x) = lim

n→∞
4nf2

( x
2n

)
(3.6)

for all x ∈ V .

Proof. Notice that

Dfi(x, y) = Qfi(x+ y, y)−Qfi(x,−y) +Qfi(0, y)

for all x, y ∈ V and i = 1, 2. Put ϕi(x, y) := φi(x + y, y) + φi(x,−y) +
φi(0, y) for all x, y ∈ V and i = 1, 2, then ϕ1 satisfies (2.2) and ϕ2

satisfies (2.6). Moreover

‖Dfi(x, y)‖ ≤ ϕi(x, y)

for all x, y ∈ V and i = 1, 2. According to Theorem 2.4, there exists
a unique mapping F1 : V → Y satisfying (3.5) which is represented by
(2.4). Observe that

lim
n→∞

∥∥∥f1o(2nx)

23n

∥∥∥ = lim
n→∞

‖Qf1(0,−2nx)‖
23n+1

≤ lim
n→∞

φ1(0,−2nx)

23n+1

≤ lim
n→∞

Ln

2n+1
φ1 (0,−x) = 0

as well as limn→∞

∥∥∥f1(2nx)−f1(−2nx)
2·4n

∥∥∥ = 0 for all x ∈ V . From this and

(2.4), we get (3.6) for all x ∈ V . Moreover, we have∥∥∥∥Qf1(2nx, 2ny)

4n

∥∥∥∥ ≤ φ1(2
nx, 2ny)

4n
≤ Lnφ1(x, y)

for all x, y ∈ V . Taking the limit as n→∞ in the above inequality, we
get

QF1(x, y) = 0

for all x, y ∈ V . On the other hand, according to Theorem 2.5, there
exists a unique mapping F2 : V → Y satisfying (3.5) which is represented
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by (2.7). Observe that

8n
∥∥∥f2o ( x2n)∥∥∥ =

8n

2

∥∥∥Qf2 (0,− x

2n

)∥∥∥ ≤ 8n

2
φ2

(
0,− x

2n

)
≤L

n

2
φ2 (0,−x) = 0

for all x ∈ V . It leads us to get

lim
n→∞

8nf2o

( x
2n

)
= 0 and lim

n→∞
4nf2o

( x
2n

)
= 0

for all x ∈ V . From these and (2.7), we obtain (3.6). Moreover, we have∥∥∥4nQf2

( x
2n
,
y

2n

)∥∥∥ ≤ 4nφ2

( x
2n
,
y

2n

)
≤ Ln

2n
φ2(x, y)

for all x, y ∈ V . Taking the limit as n→∞ in the above inequality, we
get

QF2(x, y) = 0

for all x, y ∈ V .

Now we can use Remark 2.6, Theorem 2.7 and Theorem 2.8 to show the
stability of the Hyers-Ulam-Rassias stability of the functional equation
(1.3) in the following theorems:

Corollary 3.3. Let X be a normed space and Y a Banach space.
Suppose that the mapping f : X → Y satisfies the inequality

(3.7) ‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)
for all x, y ∈ X, where θ ≥ 0 and p ∈ [0, 2) ∪ (3,∞). Then there exists
a unique quadratic-cubic mapping F : X → Y such that

‖f(x)− f(0)− F (x)‖ ≤


θ

2p − 8
‖x‖p if p > 3,

θ

4− 2p
‖x‖p if 0 ≤ p < 2

for all x ∈ X.

Proof. This corollary follows from Remark 2.6, Theorem 2.7 and The-
orem 2.8, by putting ϕ(x, y) := θ(‖x‖p + ‖y‖p), L := 2p−2 < 1 when
p < 2, and L := 23−p < 1 when p > 3.

Corollary 3.4. Let X be a normed space and Y a Banach space.
Suppose that the mapping f : X → Y satisfies f(0) = 0 and the in-
equality (3.7) for all x, y ∈ X\{0}, where θ ≥ 0 and p < 0. Then f is
itself a quadratic-cubic mapping.
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Proof. This corollary follows from Theorem 2.4, by putting ϕ(x, y) :=
θ(‖x‖p + ‖y‖p) and L := 2p−2 < 1

4 .

Corollary 3.5. Let X be a normed space and Y a Banach space.
Suppose that the mapping f : X → Y satisfies the inequality

‖Df(x, y)‖ ≤ θ‖x‖p‖y‖q

for all x, y ∈ X, where θ ≥ 0, p > 0 and p+ q ∈ [0, 2) ∪ (3,∞). Then f
is itself a quadratic-cubic mapping.

Proof. This corollary follows from Remark 2.6, Theorem 2.7 and The-
orem 2.8, by putting ϕ(x, y) := θ‖x‖p‖y‖q, L := 2p+q−2 < 1 when
p+ q < 2, and L := 23−p−q < 1 when p+ q > 3.
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