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AN INTRODUCTION TO ¢—DENSITY
AND ¢ —DENSE ACE

BunvyeoN KANG*

ABSTRACT. In this paper, we introduce a concept of the eg— limits
of vector and multiple valued sequences in R™. Using this concept,
we study about the concept of the eg—dense subset and of the points
of ep—dense ace in the open subset of R™. We also investigate the
properties and the characteristics of the ep—dense subsets and of
the points of eg—dense ace.

1. Introduction

In this section, we introduce a concept of the ey—limits of vector and
multiple valued sequences in R™. And we study some properties of this
€o—limit which we need later.

DEFINITION 1.1. Let {x,} be a vector-valued and multi-valued in-
finite sequence of elements of R™. And let ¢g > 0 be any, but fixed,
non-negative real number. For a set S, if the following condition is sat-
isfied, we call that the ep— limit of {z,,} as n converges to oo is S, and

we denote it by xn = S5 : S is the set of all vectors a € R™

n—-—ao0
such that
Ve > €9, K € N s.t.(Yn € N)n > K, (Vz,) = ||z, — | <e.

DEFINITION 1.2. For a multi-valued infinite sequence {z, } of vectors
in R"™, we call that {z,} is ultimately bounded if and only if there exist
two real numbers K and M such that (Vn € N)n > K,Vx, = |z,| <
M.

For the ¢g— limit, we have the following representation lemma.
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LEMMA 1.3. (Representation) Let {x,} be a vector-valued and
multi-valued infinite sequence of elements of R™. And let ¢y > 0 be any,
but fixed, non-negative real number. Suppose that {z,} is ultimately

bounded. If :L'n =S # () then S is a compact and convex

n—aoQ

subset of R™ such that S = QEQSLE(Q,EO). Here B(a, €y) denotes the
closed ball B(a, ep) = {x € R™|||z — of < e} and

SSL ={a € R"|Hzp, } <{zn} s.t.kli_{rolomnk = a}
and {z,, } < {x,} means that {x,,} is a single-valued subsequence of

Proof. (C) Let any element 8 € S and any member a € SSL be
given. Then we have

Since a € SSL, there is a single-valued and convergent subsequence
{xn, } such that klim T, = . Hence we have
—00

Ve > o, 3K € N s.t. (Vk € N) k > Ky = ||z, — af| < 6_260
If we choose a natural number K = max (K1, K3) then we have
1B=all = I8 = 2nx + 2ny —
< B = zagell + l2ng — all

€ — € 64*60__
2+2—6.

< €+

Since € > €o was arbitrary, we have [|3 — || < €. That is, 8 € Bla, €).
Since o € SSL was arbitrary, we have [ € QSLB(oz, €o). Since g € S
ac

was also arbitrary, S is a subset of (ar, €0). (2) In order to show
(e

N B
eSSL
the opposite inclusion, let 8 ¢ S be any element of R"™ — S. Then we
have

e > €o s.t.(Vk € N,3n, € N,3zy,, s.t.||xn, — B > €1).

Since {z,} is ultimately bounded, {x,, } is a bounded sequence in R™.
Thus there exists a convergent subsequence {zy, } of {zn,} by the

Bolzano-Weierstrass theorem. Hence we may assume that lim Ty, = O
pP—00
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for some vector o € R™. Then we have, for such an ¢; > ¢,

IK €N sitp> K = |lag,, —af < o .
Thus we have
[8—al = [B—=an, +zn, —a
> 1B =y |l = Iz, — <
€1 — €0 €1+ €o
> - = )
“l D 2

Since 94 > ¢, this implies that 3 ¢ B(a, €). Since v € SSL , this im-
lies that Nn B . Consequently, we have S = N B(a, €).
plies that 6 ¢ 1) Bla, o). Consequently, we have S = 11 B(a, o)

On the other hand, since S is the intersection of the closed balls B(«, €)
which are bounded, closed and convex, S is compact and convex in
R™. O
Note that if m = 1 in the above lemma then we have
o, (4~ B. A+ 5
n—oo
for some A and 0 < B < ¢, since the compact and convex subset of R

is just a closed and bounded interval.
Moreover, we have the following corollary.

COROLLARY 1.4. Let {x,} be a single-valued sequence of vectors in
R™ which converges to some vector a € R™. Then we have
o T — Bloco)
n—-ao0

for all eg > 0 .

Proof. Since the subsequential limit a of {z,,} is unique, this corollary
follows from the above lemma, 1.3. O

2. Epsilon zero density in R™

In this section, we investigate about the concept of the ey—dense
subset in R and research the shape of this set. Throughout this section,
€o > 0 denotes any, but fixed, non-negative real number. We denote the
open and closed balls in R™ by B(a,€) = {x € R"|||lx — af < €} and

B(a,e) = {z € R"|||lx — af < €}.
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DEFINITION 2.1. For a given subset S of R™, a point ¢ € R™ is an
eo—accumulation point of S if and only if B(a,e) N (S — {a}) # 0 for
any positive real number € > €¢y. And a point a € S is an e¢g—isolated
point of S if and only if B(a,e;) N (S — {a}) = 0 for some positive real
number €1 > €.

Note that 0—accumulation point of S is the usual accumulation point
of S.

DEFINITION 2.2. If S is a subset of R, then we define the eg—derived
set as the set of all the eg—accumulation points of S and denote it by
/
(€0)”
Note that 0—derived set is the derived set in the usual sense.
DEFINITION 2.3. Let F be any non-empty and open subset of R™
and ¢g > 0. We define that a subset D of E is an ¢y—dense subset of
E in E if and only if & C D)/ y U D. 1In this case, we say that D is

| («@
ep—dense in F.

Note that E can be a proper subset of DEEO)UD in the above definition.

LEMMA 2.4. Let D be any non-empty subset of R™. Then a € DE )

)
if and only if there exists a single-valued sequence {b,} in D — {a} such

that a € bn.

n—aoo

Proof. (=) 1Ifa € DEEO) then we have Ve > €g, B(a,e)N (D —{a}) # 0.

Choosing € = ¢y + % for each natural number n € N, we have

1
Bla,eo + )0 (D~ {a}) £ 0.
Thus there is a single-valued vector sequence {b,} in D — {a} such that
by, € B(a, € + %) for each n € N. For any given positive real number
€ > €, choosing a natural number K € N so large that ¢y + % < €, we
have a statement

1 1
V6>60,E|K€Ns.t.n2K:>an—aH<50+—§60+E<6
n

which implies that a € bn. (<) Suppose that there exists a

n——ao0

single-valued sequence {b,} in D — {a} such that a € bn. And

n—ao0
let any positive real number € > ¢y be given. Then we have

Ve > ¢y, 3K € N sitn > K = ||b, —al| < e
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Since bg # a, this implies that bx € B(a,e) N (D — {a}) #  which
completes the proof. O

LEMMA 2.5. Let E be any non-empty and open subset of R™. Let D
be a subset of E and €y > 0 be any, but fixed, non-negative real number.
Then D is eg—dense in E if and only if for each element a € E, there

exists a sequence {by} in D such that a € bn.

n—aoo

Proof. (=) Let any element a € FE be given. If a € D then we need
only to choose a sequence {b,} so that b, = a for each natural number
n € N. On the other hand, if « € £ — D then a € DEEO). Thus, by

lemma 2.4, there exists a single-valued sequence {b,} in D — {a} such

that a € bn. (<) Let any element a € E be given. If a € D

n—aoQ

then we are done. Suppose that a € £ — D. Since a € bn for

n—-m:o0
the sequence {b,} of the assumption in this lemma, we have

Ve > €y, 3K € N sitn> K = ||b, —a| <e.

But bx # a since a € EF — D and bg € D. Hence we have bx €
B(a,e) N (D — {a}) # 0 which implies that a € DEGO). Therefore, D is
ep—dense in F. ]

THEOREM 2.6. Let D be a bounded, non-empty subset of R™ and
€0 > 0 be any, but fixed, non-negative real number. Let {x,} be the
multi-valued sequence in R™ such that x,, = D for each natural number
n € N. Then SSL({xy}) C DZeo) U D. Here SSL({z,}) is the set of all

the single-valued subsequential limits of {x,} which was introduced in
lemma 1.3.

Proof. Let any element a € SSL({x,}) be given. Then there exists a
single-valued subsequence {z,, } of {x,} such that nh_}ngo Zp, = a. Hence

a € xnk = B(a, ¢)

n—aoo

by the corollary 1.4. If @ € D then we are done. On the other hand, if
a ¢ D then x,, # a for each natural numbers k € N. Hence {z,, } is a
single-valued sequence in D — {a}. Then a € DE ) by lemma 2.4. [

€0
It can be easily proved that, for any subsets C' and D of an open
subset F,

CCD= CEGO) < DEEO) and € < e = DEGI) < DEE?)'
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Moreover, we have

THEOREM 2.7. CEEO) U DE
D of E.

(Cu D)’(go) for any subsets C' and

€)

Proof. Clearly, CEGO) C (CU D)’(CO) and Dzeo) C (CU D)’(eo). Hence

we have C’é U Déeo) c (CuU D)'(eo). Conversely, let any element a €

€0

(Cu D)’(EO) be given. By the above lemma 2.4, there exists a sequence
{bn} in (CU D) — {a} such that a € bn. Since (C'U D) — {a}

n—-ao0
contains infinitely many terms of {b,}, either C' or D contains infinitely

many terms of {b,}. Thus a € bnk for some subsequence {b,, }

n—aoo

of elements of C' — {a} or of elements of D — {a}. Therefore, a € CEEO)
oraé€ Dzeo) by lemma 2.4. O

Note that if D is e;—dense in F then D is also ea—dense in E for
each positive real number €5 > €.

LEMMA 2.8.  Let a subset D of R™ be given. Then D is 0—dense
in R™ if and only if DEO) = R™.

Proof. (<) Since D C R™, we have D U DEO) =DUR™=R". (=)

Suppose that D is a 0—dense subset of R"™. Then D U DEO) = R™.
Hence we need only to show that D C DZO)' Suppose that this is not

true. Then there is a point a € D such that a ¢ DEO). Thus we have
Jde; > 0 s.t.B(a,e1) N (D — {a}) = 0.

Now set b = a+3(e1,0,---,0). Then b ¢ D and B(b, )N (D —{b}) = 0.
Hence b is not a 0—accumulation point of D . Thus we have b ¢ D U
DEO) = R™. This is a contradiction which completes the proof. O

The following example shows that the above lemma 2.8 is not true
for a positive real number ¢y > 0 in general.

EXAMPLE 2.9.  Let D = {0}U{R™—B(0, £)}. Then D is 1—dense
in R™, but D}y, # R™.

Proof. Clearly, we have R™ — B(0, g) - DEO) - D’(l). And if 0 <

|a]| <1 then 0 € B(a,¢) N (D — {a}) # 0 for any positive real number
e > 1. Hence we have B(0,1) — {0} C DEl). Moreover, if 1 < [|af < &



eo—density and ace 75

then, choosing an element b € R™ such that b = we have [|b|| =

5||aH’
and

af = 7 5||a||a” 7—5llall _

5|| || 5lall 5 5

Thus we have b € B(a,€) N (D — {a}) # 0 for any positive real number
€ > 1. Therefore, we must have R™ — {0} C DZl)' But

11 11
1g) N (D= {0}) =0 with 75> 1.

Hence Dzl) # R™. But D is 1—dense in R™ since D U DEl) =R™. O

LEMMA 2.10.  Let E be any non-empty and open subset of R™. If a
subset D of E satisfies the relation E C bUDB (b, €0) then D is eg—dense
€

16 = all = [l =5

B(0,

in FE. But the converse is not true in general.

Proof. Suppose that E C bUDE(b, €9) and any vector a € F be given.
€

If a € D then we are done. Now suppose that a € £ — D. Then there is
an element b € D such that a € B(b, e). Hence ||b — a|| < ¢y. Now let
any positive real number € > ¢y be given. Then we have |[b—al| < ¢ < e.
Thus b € B(a,€). Hence we have B(a,e) N (D — {a}) # () since b € D

and a # b. Thus a € Dz ,)- Hence D is eg—dense in E.

Finally, Let D = R™ — B(0,1). Then buDE(b, 1) # R™ since 0 ¢
€
bUDB(b, 1). But, for any positive real number € > 1, we have B(0,¢) N
€

(D—{0}) # 0 which implies that 0 is a 1 —accumulation point of D. Since
we can prove by the similar method that any point of B(0,1) — {0} is
1—accumulation point of D, D is a 1—dense subset of R™. 0

THEOREM 2.11. Let D be a nonempty subset of an open subset
E of R™ and D = DEO) UD. Then E C U B(b,e€p) if and only if D is
beD

ep—dense in E.

Proof. (=) By lemma 2.10. D is eg—dense in E. In order to show
that D is eg—dense in F, let any element a € E and any positive real
number € > ¢y be given. Since EJF% > ¢y and D is eg—dense in E, we
have B(a, <52) N (D — {a}) # 0. Hence there is an element b € D — {a}
such that [|b— a < <2 . Since b € D — {a}, we have b € D — {a} or
be D’ —{a}. Ufbe D {a} then we have

T 0) 1 (D= {a}) € Bla,) N (D — {a}) £ 0

b € B(a,
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which implies that a € Dzeo) U D. On the other hand, if b € DEO) —{a}

then there exists an element ¢ € D —{a} such that ||c—b|| < <5®. Hence
we have

€ — € €+ €
2 + 2

Thus ¢ € B(a,e) N (D — {a}) # 0 which also implies that a € DZEO) uD.
(«<=) Let any element a € E be given. If a € D then we are done
/

since a € B(a,€y). Now suppose that a ¢ D. Then a € D(EO). Since

le = all < lle =bll + [|b = all < = e

€ + % > ¢g for each natural number n € N, we have

Bla,eo+ )N (D~ {a}) £ 0.

Hence there exists a single-valued sequence {b,} of the elements of D
such that

b, € B(a, € + %) N (D —{a}).

Since {b,} is a bounded sequence of elements of R™, by applying the

Bolzano-Weierstrass theorem, there is a convergent subsequence {b,, } of

{bn} such that klzm bn, = b for some vector by € R™. Since D is closed
— 00

in R™, we have by € D. Moreover, since ||b,, —al| < Eo—l-é, by taking the
limit as k — oo, we have ||bg—al| < €y. Thus a € B(bg,e0) C U B(b, ).
beD

This completes the proof. ]

For example, consider the cartesian product Z™ of the set Z of all the
integers. Since the length of the diagonal line of the unit m—dimensional

cube in Z™ is V12 +.-- 4+ 12 = /m, we have R™ = U E(a,@).

aczZm
Hence Z™ is @—dense in R™ since Z™ = Z™. But the closed set Z™

is not ¢g—dense in R™ for each 0 < ¢y < @ since R™ # Lé B(a,e)
acZ™
in this case.

THEOREM 2.12. Let D be a subset of an open subset E2 of R™
and €9 > 0 be any, but fixed, non-negative real number. Then D is
€o—dense in E if and only if for each positive real number € > €, we
have E C bUDB(b, €).

€

Proof. (=) Suppose that D is eg—dense in E and let any positive real
number € > €y be given. For a vector a € F, if a € D then we are done
since a € B(a,¢). Now suppose that a € E — D. Since D is eg—dense
in £ and € > ¢y, we have B(a,e) N (D — {a}) # (. Thus there exists
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an element b € D such that b € B(a,e¢). Then we also have a € B(b,¢).
Hence we have

a € B(b,e) C B(b,e) C U B(b,e).
beD

(<) Let any element a € E be given. And let any positive real number

€ > ¢y be given. If a € D then we are done since a € D U DZGO).

Suppose that « € E — D. Since E C bUDE(b, € + 52), we have a €
€

B(be, €0+ 5¢) for some element b € D since €g + 52 > €. Hence we
have b. € B(a,eo + “5°). Since ¢ + 5 < € + € — €g = ¢, we have
be € B(a,¢e) which implies that B(a,e) N (D — {a}) # 0 since this set
contains an element b, € D and a # b.. Therefore, we have a € DEEO)

which completes the proof.

COROLLARY 2.13. Let D be a subset of an open subset E of R™
and €y > 0 be any, but fixed, non-negative real number. Then D is not
eg—dense in E if and only if we have B(ay,e1) N D = () for some positive
real number €; > ¢y and some vector a1 € E.

Proof. (=)Suppose that D is not ep—dense in £. Then E is not a
subset of the union bUDB (b, €1) for some positive real number €; > €y by
€

theorem 2.12. Hence there is an element a; € E such that a; ¢ B(a,€)
for all a € D. And a; ¢ D since a € B(a,€1) for all @ € D. Now we
have B(aj,e1) N D = 0, for if a € B(ai,e1) N D = () for some a € D
then a; € B(a,e1) C B(a,€1) which is a contradiction. (<«=) Conversely,
suppose that B(a1,e1) N D = () for some positive real number € > ¢y and
some vector a1 € F. Then we have, for each a € D,

la1 —af| > e > 61260.

Thus we have

= €1 + €0
U B(b .
al%beD (® 2 )

Since % > €g, D is not eg—dense in F by theorem 2.12. O

€1+ €o

E B
)and EZ U B(b.

THEOREM 2.14. Let D be a subset of an open subset E of R™ and
€9 be any, but fixed, positive real number. Then D is eg—dense in E if
and only if D is e;—dense in E for each positive real number €; > .

Proof. (=) This follows immediately from the fact that € > ¢; = € >
€0 (<) Suppose that D is not eg—dense in E. Then, by corollary 2.13,
there exists a positive real number €; > ¢y and a vector a; € F such
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that D is disjoint from B(aq,€1). Now consider the positive real number

%. Then we have

€1+ €
dep > ! 0

and Ja; € F s.t. B(aj,e1) N D =0.

Thus, by corollary 2.13 again, D is not %—dense in F. Since % >
€0, this contradicts to the fact that D is e—dense in E for each positive
real number € > ¢y. Hence D is ¢g—dense in F. ]

COROLLARY 2.15. Let D be a closed subset of an open subset E
of R™ and €y > 0 be any, but fixed, non-negative real number. Then
EgbUDB(b, €) for each positive real number € > € if and only ingbUDB(b, €0)-
€ €

Proof. (=) By theorem 2.12, D is eg—dense in E. Then, since D = D
is a closed subset of R™, we have EQbUDE(b, €9) by theorem 2.11. (<)
€

This follows immediately from the inclusion B(b, eg) C B(b,¢) for each
positive real number € > ¢y and each element b € F. ]

Note that if EgbUDE(b, €2) for some positive real number e < €,
=

then D is e¢g—dense in E since D is ea—dense in E and e3 < ¢y by the
lemma 2.10.

3. Epsilon zero dense ace

In this section, we investigate about the concept of the ¢g—dense ace
of a given eg—dense subset and research the shape of the point of the
egp—dense ace. Throughout this section, ¢y > 0 denotes any, but fixed,
non-negative real number.

DEFINITION 3.1. Let D be an ¢g—dense subset of an open subset E of
R™. For an element a € D, the point a is called a point of the e¢g—dense
ace of D in E if and only if D — {a} is not ¢y—dense in E.

Note that 0—dense subset of £ has no points of the ¢g—dense ace.

LEMMA 3.2. Let D be an e¢y—dense subset of an open subset E of
R™ with ¢y > 0. For an element a € D, if a ¢ DEEO) then a is a point of
the eg—dense ace of D. And the converse is not true in general.

Proof. Suppose that a ¢ DEEO). Then there is a positive real number
€1 with €1 > ¢ such that B(a,e1) N (D — {a}) = (. By taking the
minimum min(e, 2¢p), we may assume that €y < €1 < 2¢p. Now pick up
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a vector b € E so close that [[b — al| < 25%. Indeed, this is possible
since a € D C E and F is an open subset of R". Then we have, for any
element x € B(b, e + “5°),

lo = all < fle = bl +[b—all < e+ T+ TP <

which implies that x € B(a, €1). Hence B(b, o+ “3) C B(a,€1). Thus

€1 — €
3
Since o + <5 > €, b ¢ D and b # a, this implies that
b ¢ [D—{a}] V(D —{a}).
Thus D — {a} is not eg—dense in E. Hence a is a point of the ¢y—dense
ace of D in K. On the other hand, put
D =[R™ - B((1.25,0,---,0),1.25)] U {(1,0,---,0)}.

Then we have

U B(a,1) = [R™ — B((1.25,0,---,0),0.25)] U B((1,0,--- ,0),1) = R™.

aceD

Since D is closed, D is a 1—dense subset of R™ by theorem 2.11. But
we have

B((1.25,0,---,0),1.25) N (D — {(1,0,---,0)} — {(1.25,0,--- ,0)}) = 0.
Thus we have

(1:25,0,++,0) & [D = {(1,0,+ 0}y U (D = {(1,0,-+ ,0)})
which implies that D — {(1,0,---,0)} is not 1—dense in R™. Thus

(1,0,---,0) is a point of the 1—dense ace of D and (1,0,---,0) € DEl).
[

B(b, €p +

)N (D —{a}) € Ba,e1) N (D —{a}) = 0.

Now we have the following theorem.

THEOREM 3.3. Let D be an eg—dense subset of the non-empty and
open subset 2 of R™ with ¢y > 0. For an element a € D, a is a point of
the eg—dense ace of D in FE if and only if there is a real number €; > €g
and a point b € E such that B(b,e1) N D = {a}. In this case, the point
b € E must satisfy the relation |la — b|| < €.

Proof. (<) Assume that B(b,e1) N D = {a} for some real number
€1 > €o and some element b € E. Then B(b,e1) N (D — {a}) = (). Hence
we have b ¢ (D —{a}) and B(b,e1) N (D —{a} —{b}) = (. Since €; > o,
this implies that b ¢ (D—{a})’(eo). Since b € E, this implies that D—{a}
is not an ¢y—dense subset of E. Thus a is a point of the ¢g—dense ace
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of D in E. (=) Conversely, suppose that a is a point of ey—dense ace
of D in E. Then D — {a} is not eg—dense in E. Hence there is a point
b € F such that

b ¢ [D—{a}]iy V(D —{a}).

Then we must have
b ¢ [D—{a}]l, and b¢ (D—{a})=Dn{a}".

Since b € (DN {a}®)¢ = DY U {a}, we have the following two cases.
Case 1. The case where b ¢ [D — {a}]’(EO) and be DC.

In this case, since b ¢ [D — {a}]’(eo), we have
de; > €g S.t.B(b, 61) N {[D — {a,}] — {b}} = 0.

But we must have b € D] | since b € D) U D and b ¢ D. Hence we
(€0) (e0)

have
Ve > €p, B(b,e) N {D — {b}} # 0.
Since € > €y was arbitrary, we must have
B(b,e)N D = {a}

for all positive real nurriber € such that ¢ < € < ¢€1. Since ¢g < € < ¢
was arbitrary, we have B(b,ep) N D = {a}. In particular, we have

Je1 > €9 s.t.B(b,e1) N D = {a}

for the point b € F.
Case 2. The case where b ¢ [D — {a}]’(eo) and b= a.

In this case, since b=a ¢ [D — {a}]’(eo), we have
Jde; > ¢y s.t.B(a,e1) N{[D — {a}] — {a}} = 0.
Therefore, we have Je; > ¢y s.t.B(b,e1)ND = {a} for the element b = a.
This completes the proof of the sufficient condition in this theorem.
Moreover, if the point b € F in this theorem satisfies ||b — a|| > €g, then
b¢ DZGO) U D since
Jea = ||b—al| > €y s.t.B(b,ea) N{D —{b}} =0 and b ¢ D.

This is a contradiction to the fact that D is eg—dense in FE. ]

Let’s denote the set of all the points of ¢g—dense ace of D in R™ by
dape, (D) or dape,(D; R™) and in E by dape,(D; E).

COROLLARY 3.4. dape,(D; E) is countable and closed for any positive
real number €y > 0.
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Proof. By the above theorem 3.3, a € dap.,(D; E) if and only if there
is a positive real number €, > €y and a point b, € E such that B(bg, €,)N
D = {a}. Hence any closed ball with radius €y has at most finite number
of the points of eg—dense ace of D in E. Therefore, dape,(D;E) is
countable and closed for any positive real number ¢y > 0. O

THEOREM 3.5. (Double Capacity) Let D be an ey—dense subset of
R™ and ey > 0 be any, but fixed, positive real number. If dap.,(D; R™) #
() then D is not ¢ —dense in R™. Equivalently, if D is ¢g—dense in R™
then dapae, (D; R™) = 0.

Proof. Choose an element a € dap.,(D; R™) # (. By the above
theorem 3.3 with £ = R™, there is a positive real number ¢, > ¢y and
a point b, € R™ such that B(b,,€,) N D = {a}. Now choose an element
¢ € R™ such that

_ J3(@ba + eaqp=ip) (if by # a)
${2b, + €4(1,0,---,0)} ( if b, =a)

Note that ¢ is the center point of the line segment joining the point b,
and the point b, + Ga”(;‘;%:” when b, # a. Then we have a ¢ B(c, %)
and

Je; = %a > %O, s.t.B(e,e1) N D = (.

Hence D is not ¢ —dense in R™ by corollary 2.13. Finally, if D is
eo—dense in R™ then D is 2¢p—dense in R™ and dapa,(D; R™) = 0. O

Note that the theorem above does not hold for an open subset E of
R™ in general. For example, if we choose an open subset

E = B((0,---,0),1) U B((6,0,---,0),1)

and a subset D = {(0,---,0),(6,0,---,0)} then D is 3—dense subset of
E and daps(D; E) = D. But D is also 1.5—dense in E and dapg(D; E) =
D #0.

However, we have the following theorem.

THEOREM 3.6. Let D be an eg—dense subset of an open subset FE

of R™ and ¢y > 0 be any, but fixed, positive real number. Suppose
that bUDB(b, €0) C E. If dape,(D; E) # 0 then D is not % —dense in E.
€

Equivalently, if D is eg—dense in E then dapa.,(D; E) = 0.

Proof. Choose an element a € dap,(D; E) # (. By the above the-
orem 3.3, there is a positive real number ¢, > ¢y and a point b, € E
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such that B(b,,€,) N D = {a}. Since the point b, € E satisfies the con-
dition [|b, — al| < €y, we may assume without the loss of generality that
€q < %60. Now choose an element ¢ € R™ such that

@‘

(if [|ba — all > )
c= %(a—i—b —I-ea”b_a) (if 0<[lbg—al <)

all

a+ @ (1,0, ,0) (if by =a)

Now the following three cases occur.
Case 1. The case where ||by — al| > .
In this case, we have ¢ = b, € E. Choose

) 1 €, €0 +2”ba _aH
Then we have
Vr € B(c,e1) = ||z —ba|| = |lz—¢|| <ea
€0 + 2||bg — all §€ e
4 =3 0 a-

Hence we have B(c,e1) € B(ba, €q). And, since [|b, — a > <, we have

2||by —
Je; = 60+||4aa” > %O,Elc =b, € E s.t.B(c,e1)ND =1{.
Case 2. The case where 0 < ||b, — al| < 9.
In this case, let’s pick up ¢ = 7( + bq eaHg“ ZH) Then, since
€q < %eo, we have
1 be —a
_ — 1=(b. — o %
||C CLH H2( a a+€a||ba 701”)”
[ba — al €a
= e gy e
2 U —al

1
= (b —all + <)
1 (60 360

st
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Hence ¢ € B(a,¢€) C bUDB(b, €0) C E. Now if we choose €1 = (||by —
€

al| 4+ €,) then a ¢ B(c,e1) and €, > €1 > &% > 2. And we have

ze Blcea)=llz—ball < lz—cl+c—bd

1 b, —a
< “(a—b e
61+”2(a’ a+€aHba—6LH)H
bo —all + ¢ 1 €
bl Ly

2 2
bo —al| + € 1
— || a 2’ a +§(€a_||ba_a”):€a'

Thus B(c,€1) C B(bg, €q). Therefore, we have
1
Fe1 = 5 (b — all + ) > i20 Je € E s.t.B(c,e) N D = .

Case 3. The case where b, = a.
In this case, let’s pick up ¢ = a + %(1, 0,---,0). Then we have
€0+ €q € + %60 5
1,0,---,0)) < 229 _ 2 .
4 ( y Yy ; )H < 4 860 < €

Hence ¢ € B(a, €) C bUDB(b, €0) C E. Now if we choose ¢; = 94 > <
€

le = all =]

then we have

x € B(e,e1) = ||z —bo|]| = ||z —al
< oz —cf +lle—al
€+ €
< a0, 0)]
€ té€  €te € téE e
4 4 2 “
Thus B(c,€1) C B(bg, €q). Therefore, we have
Jdey = <0 Z ‘o s 6EO,EIC € E s.t.B(c,e1) N D = 0.
Hence D is not ¢ —dense in £ by corollary 2.13. Finally, if D is ¢g—dense
in E then D is 2¢g—dense in E and dapa, (D; E) = 0. O

DEFINITION 3.7. Let D be a subset of a non-empty and open subset
E of R™. We call the density number of D in E the minimum

DN(D; E) = min{ep > 0|D is ¢y — dense in E}.
And we call the density number of @ € D in E the minimum

DN (a; E) = min{eg > 0|a € dap,(D; E)}.

|ba — a
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Note that, by theorem 2.14, D is ¢g—dense in F if and only if D is
e1—dense in F for each positive real number €; > ¢3. Hence the number
DN(D; E) is well-defined.

On the other hand, DN (a; E) is also well-defined by the following
lemma.

LEMMA 3.8. Let D be a eg—dense subset of the non-empty and open
subset E of R™ and a € dap,(D; E). If B = glb{e > 0|a € dap.(D; E)}
then

DN (a; E) = min{ey > 0la € dap,(D; E)} = f.

Proof. Suppose that a € dap.,(D;E). Since the set {¢ > Ola €
dape(D; E)} contains the number €y, this set is non-empty and bounded
below. Hence the infimum glb{e > Ola € dap(D; E)} exists. Now let
glb{e > 0la € dap.(D; E)} = /3. Then, for any positive real number ~y
such that 8 < «, there is a positive real number €5 such that § < eg < v
and a € dap,(D;E). In particular, D is y—dense in E since D is
€o—dense and €5 < 7. Since 8 < 7 was arbitrary, D is f—dense in E by
theorem 2.14. Moreover, since a € dape,(D; E), there is a real number
€3 > €z and a point b € F such that B(b,e3) N D = {a} by theorem 3.3.
Since B < €3, this implies that there is a real number €3 > 8 and a point
b € E such that B(b,e3) N D = {a} . Thus a € dapg(D; E) by theorem
3.3. Therefore, the infimum g must be the minimum. O

On the other hand, for the points of eg—dense ace, we have the following
lemma.

LEMMA 3.9. Let {D;|j € J} be a set of eg—dense subsets of the
non-empty and open subset E of R™. If ﬂJDj = () then we have
j€

dape, (jngj; E)=10.

Proof. Suppose that a € dap, (jLEJJDj; E) for some element a € jLGJJDj.
Then the subset jLeJJDj —{a} is not an ¢y—dense subset of F in E by the
definition of the point of ¢y—dense ace. But, since a ¢ jQJDj =0, we
have a ¢ Dj, for some index jo € J. Then we have D, C ngDj —{a}.
Since Dj, is an eg—dense subset of F, this implies that ngDj —{a} must

be an ¢g—dense subset of E in E. This is a contradiction. Consequently,
we have dap, ( ‘UJD]-; E)=0. O
j€
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THEOREM 3.10. Let {D;|j € J} be a set of ey—dense subsets of the
non-empty and open subset E of R™. If a is a point of eg—dense ace of
'UJDj in E then a € .ﬂjdapeo (Dj; E). That is,

S je

dape,( U D;; E) C Ndape, (Di; E).
apO(jeJ J )_jEJ apo( J )

The converse is not true in general.

Proof. We first show that a € 'ﬂJDj. Assume that a ¢ 'ﬁJDj. Then
J€ j€
a ¢ Dj, for some index jo € J. Then we have D;, C _UJD]- — {a}.
je
Since Dj, is an eg—dense subset of F, this implies that 'UJDj —{a} is
j€

an eyg—dense subset of FF. Hence a is not a point of ey—dense ace of
'UJDj in . This contradiction implies that a € 'ﬂJDj. Now, since
J€ JjE

a € dape,( U Dj; E), we have
Jj€J
de1 > €p,dbEE S.t.B(b, 61) N ('LEJJDj) = {a}
J

by theorem 3.3. Since Dj is a subset of 'UJDj for each index j € J, this
j€

implies that

Jde; > €9, b € E s.t.B(b,e1) N Dj = {a}
for each index j € J. Thus a € jgjdapeo (Dj; E) by theorem 3.3. On the
other hand, let D7 and Dy be two subsets of R such that

Dy = (—oo,—l)U{O}U(g,oo) and Dj = (—oo,—g)U{O}U(l,oo).

Then 0 € dapi(D1; R) Ndapi(D2; R). But 0 is not a point of 1—dense
ace of D1 U Dj in R since D; U Dy = (—o0, —1) U {0} U (1, 00). O

EXAMPLE 3.11. Assume that the earth is a perfectly elliptical body.
Let F C R? be the set of all the points on the surfaces consisting of the
Korean land excluding all the islands. And let E O F' be an open subset
of R? such that the distance between F and the boundary of E is less
than or equal to 1 meter. Now let D C E be the set of all the points
on the surface F' consisting of all the express highways in the Republic
of Korea. Then D is 100—dense subset of E with respect to the unit of
kilometers since any closed ball with center at E and with radius r with

r > 100(km) contains at least one point of D and since E C UDE(a, €1)
ae

for each positive real number ¢; > 100.
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