AN INTRODUCTION TO ϵ_{0}-DENSITY
 AND ϵ_{0}-DENSE ACE

Buhyeon Kang*

Abstract

In this paper, we introduce a concept of the $\epsilon_{0}-$ limits of vector and multiple valued sequences in R^{m}. Using this concept, we study about the concept of the ϵ_{0}-dense subset and of the points of ϵ_{0}-dense ace in the open subset of R^{m}. We also investigate the properties and the characteristics of the ϵ_{0}-dense subsets and of the points of ϵ_{0}-dense ace.

1. Introduction

In this section, we introduce a concept of the ϵ_{0}-limits of vector and multiple valued sequences in R^{m}. And we study some properties of this ϵ_{0}-limit which we need later.

Definition 1.1. Let $\left\{x_{n}\right\}$ be a vector-valued and multi-valued infinite sequence of elements of R^{m}. And let $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. For a set S, if the following condition is satisfied, we call that the ϵ_{0} - limit of $\left\{x_{n}\right\}$ as n converges to ∞ is S, and we denote it by $\underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}=S: S$ is the set of all vectors $\alpha \in R^{m}$ such that

$$
\forall \epsilon>\epsilon_{0}, \exists K \in N \text { s.t. }(\forall n \in N) n \geq K,\left(\forall x_{n}\right) \Rightarrow\left\|x_{n}-\alpha\right\|<\epsilon
$$

Definition 1.2. For a multi-valued infinite sequence $\left\{x_{n}\right\}$ of vectors in R^{m}, we call that $\left\{x_{n}\right\}$ is ultimately bounded if and only if there exist two real numbers K and M such that $(\forall n \in N) n \geq K, \forall x_{n} \Rightarrow\left\|x_{n}\right\| \leq$ M.

For the $\epsilon_{0}-$ limit, we have the following representation lemma.

[^0]Lemma 1.3. (Representation) Let $\left\{x_{n}\right\}$ be a vector-valued and multi-valued infinite sequence of elements of R^{m}. And let $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. Suppose that $\left\{x_{n}\right\}$ is ultimately bounded. If $\underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}=S \neq \emptyset$ then S is a compact and convex subset of R^{m} such that $S=\bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. Here $\bar{B}\left(\alpha, \epsilon_{0}\right)$ denotes the closed ball $\bar{B}\left(\alpha, \epsilon_{0}\right)=\left\{x \in R^{m} \mid\|x-\alpha\| \leq \epsilon_{0}\right\}$ and

$$
S S L=\left\{\alpha \in R^{m} \mid \exists\left\{x_{n_{k}}\right\} \leq\left\{x_{n}\right\} \text { s.t. } \lim _{k \rightarrow \infty} x_{n_{k}}=\alpha\right\}
$$

and $\left\{x_{n_{k}}\right\} \leq\left\{x_{n}\right\}$ means that $\left\{x_{n_{k}}\right\}$ is a single-valued subsequence of $\left\{x_{n}\right\}$.

Proof. (\subseteq) Let any element $\beta \in S$ and any member $\alpha \in S S L$ be given. Then we have
$\forall \epsilon>\epsilon_{0}, \exists K_{1} \in N$ s.t. $(\forall n \in N) n \geq K_{1},\left(\forall x_{n}\right) \Rightarrow\left\|x_{n}-\beta\right\|<\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}$.
Since $\alpha \in S S L$, there is a single-valued and convergent subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha$. Hence we have

$$
\forall \epsilon>\epsilon_{0}, \exists K_{2} \in N \text { s.t. }(\forall k \in N) k \geq K_{2} \Rightarrow\left\|x_{n_{k}}-\alpha\right\|<\frac{\epsilon-\epsilon_{0}}{2} .
$$

If we choose a natural number $K=\max \left(K_{1}, K_{2}\right)$ then we have

$$
\begin{aligned}
\|\beta-\alpha\| & =\left\|\beta-x_{n_{K}}+x_{n_{K}}-\alpha\right\| \\
& \leq\left\|\beta-x_{n_{K}}\right\|+\left\|x_{n_{K}}-\alpha\right\| \\
& <\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}+\frac{\epsilon-\epsilon_{0}}{2}=\epsilon .
\end{aligned}
$$

Since $\epsilon>\epsilon_{0}$ was arbitrary, we have $\|\beta-\alpha\| \leq \epsilon_{0}$. That is, $\beta \in \bar{B}\left(\alpha, \epsilon_{0}\right)$. Since $\alpha \in S S L$ was arbitrary, we have $\beta \in \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. Since $\beta \in S$ was also arbitrary, S is a subset of $\cap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. (ِ) In order to show the opposite inclusion, let $\beta \notin S$ be any element of $R^{m}-S$. Then we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. }\left(\forall k \in N, \exists n_{k} \in N, \exists x_{n_{k}} \text { s.t. }\left\|x_{n_{k}}-\beta\right\| \geq \epsilon_{1}\right) .
$$

Since $\left\{x_{n}\right\}$ is ultimately bounded, $\left\{x_{n_{k}}\right\}$ is a bounded sequence in R^{m}. Thus there exists a convergent subsequence $\left\{x_{n_{k_{p}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ by the Bolzano-Weierstrass theorem. Hence we may assume that $\lim _{p \rightarrow \infty} x_{n_{k_{p}}}=\alpha$
for some vector $\alpha \in R^{m}$. Then we have, for such an $\epsilon_{1}>\epsilon_{0}$,

$$
\exists K \in N \text { s.t. } p \geq K \Rightarrow\left\|x_{n_{k_{p}}}-\alpha\right\|<\frac{\epsilon_{1}-\epsilon_{0}}{2}
$$

Thus we have

$$
\begin{aligned}
\|\beta-\alpha\| & =\left\|\beta-x_{n_{k_{K}}}+x_{n_{k_{K}}}-\alpha\right\| \\
& \geq\left\|\beta-x_{n_{k_{K}}}\right\|-\left\|x_{n_{k_{K}}}-\alpha\right\| \\
& >\epsilon_{1}-\frac{\epsilon_{1}-\epsilon_{0}}{2}=\frac{\epsilon_{1}+\epsilon_{0}}{2} .
\end{aligned}
$$

Since $\frac{\epsilon_{1}+\epsilon_{0}}{2}>\epsilon_{0}$, this implies that $\beta \notin \bar{B}\left(\alpha, \epsilon_{0}\right)$. Since $\alpha \in S S L$, this implies that $\beta \notin \bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. Consequently, we have $S=\bigcap_{\alpha \in S S L} \bar{B}\left(\alpha, \epsilon_{0}\right)$. On the other hand, since S is the intersection of the closed balls $\bar{B}\left(\alpha, \epsilon_{0}\right)$ which are bounded, closed and convex, S is compact and convex in R^{m}.

Note that if $m=1$ in the above lemma then we have

$$
\underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n}=[A-B, A+B]
$$

for some A and $0 \leq B \leq \epsilon_{0}$, since the compact and convex subset of R is just a closed and bounded interval.

Moreover, we have the following corollary.
Corollary 1.4. Let $\left\{x_{n}\right\}$ be a single-valued sequence of vectors in R^{m} which converges to some vector $a \in R^{m}$. Then we have

$$
\epsilon_{n \longrightarrow \infty}^{\epsilon_{0}-\lim } x_{n}=\bar{B}\left(a, \epsilon_{0}\right) .
$$

for all $\epsilon_{0} \geq 0$.
Proof. Since the subsequential limit a of $\left\{x_{n}\right\}$ is unique, this corollary follows from the above lemma 1.3.

2. Epsilon zero density in R^{m}

In this section, we investigate about the concept of the ϵ_{0}-dense subset in R^{m} and research the shape of this set. Throughout this section, $\epsilon_{0} \geq 0$ denotes any, but fixed, non-negative real number. We denote the open and closed balls in R^{m} by $B(\alpha, \epsilon)=\left\{x \in R^{m} \mid\|x-\alpha\|<\epsilon\right\}$ and $\bar{B}(\alpha, \epsilon)=\left\{x \in R^{m} \mid\|x-\alpha\| \leq \epsilon\right\}$.

Definition 2.1. For a given subset S of R^{m}, a point $a \in R^{m}$ is an ϵ_{0}-accumulation point of S if and only if $B(a, \epsilon) \cap(S-\{a\}) \neq \emptyset$ for any positive real number $\epsilon>\epsilon_{0}$. And a point $a \in S$ is an ϵ_{0}-isolated point of S if and only if $B\left(a, \epsilon_{1}\right) \cap(S-\{a\})=\emptyset$ for some positive real number $\epsilon_{1}>\epsilon_{0}$.

Note that 0 -accumulation point of S is the usual accumulation point of S.

Definition 2.2. If S is a subset of R^{m}, then we define the $\epsilon_{0}-$ derived set as the set of all the ϵ_{0}-accumulation points of S and denote it by $S_{\left(\epsilon_{0}\right)}^{\prime}$.

Note that 0 -derived set is the derived set in the usual sense.
Definition 2.3. Let E be any non-empty and open subset of R^{m} and $\epsilon_{0}>0$. We define that a subset D of E is an $\epsilon_{0}-$ dense subset of E in E if and only if $E \subseteq D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$. In this case, we say that D is ϵ_{0}-dense in E.

Note that E can be a proper subset of $D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$ in the above definition.
Lemma 2.4. Let D be any non-empty subset of R^{m}. Then $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$ if and only if there exists a single-valued sequence $\left\{b_{n}\right\}$ in $D-\{a\}$ such that $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n}$.

Proof. (\Rightarrow) If $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$ then we have $\forall \epsilon>\epsilon_{0}, B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$. Choosing $\epsilon=\epsilon_{0}+\frac{1}{n}$ for each natural number $n \in N$, we have

$$
B\left(a, \epsilon_{0}+\frac{1}{n}\right) \cap(D-\{a\}) \neq \emptyset .
$$

Thus there is a single-valued vector sequence $\left\{b_{n}\right\}$ in $D-\{a\}$ such that $b_{n} \in B\left(a, \epsilon_{0}+\frac{1}{n}\right)$ for each $n \in N$. For any given positive real number $\epsilon>\epsilon_{0}$, choosing a natural number $K \in N$ so large that $\epsilon_{0}+\frac{1}{K}<\epsilon$, we have a statement

$$
\forall \epsilon>\epsilon_{0}, \exists K \in N \text { s.t. } n \geq K \Rightarrow\left\|b_{n}-a\right\|<\epsilon_{0}+\frac{1}{n} \leq \epsilon_{0}+\frac{1}{K}<\epsilon
$$

which implies that $a \in \frac{\epsilon_{0}-\lim }{n \longrightarrow \infty} b_{n}$. (\Leftarrow) Suppose that there exists a single-valued sequence $\left\{b_{n}\right\}$ in $D-\{a\}$ such that $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n}$. And let any positive real number $\epsilon>\epsilon_{0}$ be given. Then we have

$$
\forall \epsilon>\epsilon_{0}, \exists K \in N \text { s.t.n } \geq K \Rightarrow\left\|b_{n}-a\right\|<\epsilon
$$

Since $b_{K} \neq a$, this implies that $b_{K} \in B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ which completes the proof.

Lemma 2.5. Let E be any non-empty and open subset of R^{m}. Let D be a subset of E and $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. Then D is ϵ_{0}-dense in E if and only if for each element $a \in E$, there exists a sequence $\left\{b_{n}\right\}$ in D such that $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n}$.

Proof. (\Rightarrow) Let any element $a \in E$ be given. If $a \in D$ then we need only to choose a sequence $\left\{b_{n}\right\}$ so that $b_{n}=a$ for each natural number $n \in N$. On the other hand, if $a \in E-D$ then $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$. Thus, by lemma 2.4, there exists a single-valued sequence $\left\{b_{n}\right\}$ in $D-\{a\}$ such that $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n} .(\Leftarrow)$ Let any element $a \in E$ be given. If $a \in D$ then we are done. Suppose that $a \in E-D$. Since $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n}$ for the sequence $\left\{b_{n}\right\}$ of the assumption in this lemma, we have

$$
\forall \epsilon>\epsilon_{0}, \exists K \in N \text { s.t. } n \geq K \Rightarrow\left\|b_{n}-a\right\|<\epsilon .
$$

But $b_{K} \neq a$ since $a \in E-D$ and $b_{K} \in D$. Hence we have $b_{K} \in$ $B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ which implies that $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$. Therefore, D is ϵ_{0}-dense in E.

Theorem 2.6. Let D be a bounded, non-empty subset of R^{m} and $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. Let $\left\{x_{n}\right\}$ be the multi-valued sequence in R^{m} such that $x_{n}=D$ for each natural number $n \in N$. Then $\operatorname{SSL}\left(\left\{x_{n}\right\}\right) \subseteq D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$. Here $\operatorname{SSL}\left(\left\{x_{n}\right\}\right)$ is the set of all the single-valued subsequential limits of $\left\{x_{n}\right\}$ which was introduced in lemma 1.3.

Proof. Let any element $a \in S S L\left(\left\{x_{n}\right\}\right)$ be given. Then there exists a single-valued subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n_{k}}=a$. Hence

$$
a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } x_{n_{k}}=\bar{B}\left(a, \epsilon_{0}\right)
$$

by the corollary 1.4. If $a \in D$ then we are done. On the other hand, if $a \notin D$ then $x_{n_{k}} \neq a$ for each natural numbers $k \in N$. Hence $\left\{x_{n_{k}}\right\}$ is a single-valued sequence in $D-\{a\}$. Then $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$ by lemma 2.4.

It can be easily proved that, for any subsets C and D of an open subset E,

$$
C \subseteq D \Rightarrow C_{\left(\epsilon_{0}\right)}^{\prime} \subseteq D_{\left(\epsilon_{0}\right)}^{\prime} \text { and } \epsilon_{1}<\epsilon_{2} \Rightarrow D_{\left(\epsilon_{1}\right)}^{\prime} \subseteq D_{\left(\epsilon_{2}\right)}^{\prime} .
$$

Moreover, we have
Theorem 2.7. $\quad C_{\left(\epsilon_{0}\right)}^{\prime} \cup D_{\left(\epsilon_{0}\right)}^{\prime}=(C \cup D)_{\left(\epsilon_{0}\right)}^{\prime}$ for any subsets C and D of E.

Proof. Clearly, $C_{\left(\epsilon_{0}\right)}^{\prime} \subseteq(C \cup D)_{\left(\epsilon_{0}\right)}^{\prime}$ and $D_{\left(\epsilon_{0}\right)}^{\prime} \subseteq(C \cup D)_{\left(\epsilon_{0}\right)}^{\prime}$. Hence we have $C_{\left(\epsilon_{0}\right)}^{\prime} \cup D_{\left(\epsilon_{0}\right)}^{\prime} \subseteq(C \cup D)_{\left(\epsilon_{0}\right)}^{\prime}$. Conversely, let any element $a \in$ $(C \cup D)_{\left(\epsilon_{0}\right)}^{\prime}$ be given. By the above lemma 2.4, there exists a sequence $\left\{b_{n}\right\}$ in $(C \cup D)-\{a\}$ such that $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n}$. Since $(C \cup D)-\{a\}$ contains infinitely many terms of $\left\{b_{n}\right\}$, either C or D contains infinitely many terms of $\left\{b_{n}\right\}$. Thus $a \in \underset{n \longrightarrow \infty}{\epsilon_{0}-\lim } b_{n_{k}}$ for some subsequence $\left\{b_{n_{k}}\right\}$ of elements of $C-\{a\}$ or of elements of $D-\{a\}$. Therefore, $a \in C_{\left(\epsilon_{0}\right)}^{\prime}$ or $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$ by lemma 2.4.

Note that if D is ϵ_{1}-dense in E then D is also ϵ_{2}-dense in E for each positive real number $\epsilon_{2} \geq \epsilon_{1}$.

Lemma 2.8. Let a subset D of R^{m} be given. Then D is 0 -dense in R^{m} if and only if $D_{(0)}^{\prime}=R^{m}$.

Proof. (\Leftarrow) Since $D \subseteq R^{m}$, we have $D \cup D_{(0)}^{\prime}=D \cup R^{m}=R^{m} .(\Rightarrow)$ Suppose that D is a $0-$ dense subset of R^{m}. Then $D \cup D_{(0)}^{\prime}=R^{m}$. Hence we need only to show that $D \subseteq D_{(0)}^{\prime}$. Suppose that this is not true. Then there is a point $a \in D$ such that $a \notin D_{(0)}^{\prime}$. Thus we have

$$
\exists \epsilon_{1}>0 \text { s.t. } B\left(a, \epsilon_{1}\right) \cap(D-\{a\})=\emptyset .
$$

Now set $b=a+\frac{1}{2}\left(\epsilon_{1}, 0, \cdots, 0\right)$. Then $b \notin D$ and $B\left(b, \frac{\epsilon_{1}}{4}\right) \cap(D-\{b\})=\emptyset$. Hence b is not a 0 -accumulation point of D. Thus we have $b \notin D \cup$ $D_{(0)}^{\prime}=R^{m}$. This is a contradiction which completes the proof.

The following example shows that the above lemma 2.8 is not true for a positive real number $\epsilon_{0}>0$ in general.

Example 2.9. Let $D=\{0\} \cup\left\{R^{m}-\bar{B}\left(0, \frac{6}{5}\right)\right\}$. Then D is $1-$ dense in R^{m}, but $D_{(1)}^{\prime} \neq R^{m}$.

Proof. Clearly, we have $R^{m}-B\left(0, \frac{6}{5}\right) \subseteq D_{(0)}^{\prime} \subseteq D_{(1)}^{\prime}$. And if $0<$ $\|a\| \leq 1$ then $0 \in B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ for any positive real number $\epsilon>1$. Hence we have $\bar{B}(0,1)-\{0\} \subseteq D_{(1)}^{\prime}$. Moreover, if $1<\|a\| \leq \frac{6}{5}$
then, choosing an element $b \in R^{m}$ such that $b=\frac{7 a}{5\|a\|}$, we have $\|b\|=\frac{7}{5}$ and

$$
\|b-a\|=\left\|\frac{7 a}{5\|a\|}-a\right\|=\left\|\frac{7 a-5\|a\| a}{5\|a\|}\right\|=\frac{7-5\|a\|}{5} \leq \frac{2}{5}
$$

Thus we have $b \in B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ for any positive real number $\epsilon>1$. Therefore, we must have $R^{m}-\{0\} \subseteq D_{(1)}^{\prime}$. But

$$
B\left(0, \frac{11}{10}\right) \cap(D-\{0\})=\emptyset \text { with } \frac{11}{10}>1
$$

Hence $D_{(1)}^{\prime} \neq R^{m}$. But D is $1-$ dense in R^{m} since $D \cup D_{(1)}^{\prime}=R^{m}$.
LEMMA 2.10. Let E be any non-empty and open subset of R^{m}. If a subset D of E satisfies the relation $E \subseteq \underset{b \in D}{\cup} \bar{B}\left(b, \epsilon_{0}\right)$ then D is ϵ_{0}-dense in E. But the converse is not true in general.

Proof. Suppose that $E \subseteq \underset{b \in D}{\cup} \bar{B}\left(b, \epsilon_{0}\right)$ and any vector $a \in E$ be given. If $a \in D$ then we are done. Now suppose that $a \in E-D$. Then there is an element $b \in D$ such that $a \in \bar{B}\left(b, \epsilon_{0}\right)$. Hence $\|b-a\| \leq \epsilon_{0}$. Now let any positive real number $\epsilon>\epsilon_{0}$ be given. Then we have $\|b-a\| \leq \epsilon_{0}<\epsilon$. Thus $b \in B(a, \epsilon)$. Hence we have $B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ since $b \in D$ and $a \neq b$. Thus $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$. Hence D is $\epsilon_{0}-$ dense in E.

Finally, Let $D=R^{m}-\bar{B}(0,1)$. Then $\underset{b \in D}{\cup} \bar{B}(b, 1) \neq R^{m}$ since $0 \notin$ $\cup_{b \in D} \bar{B}(b, 1)$. But, for any positive real number $\epsilon>1$, we have $B(0, \epsilon) \cap$ $(D-\{0\}) \neq \emptyset$ which implies that 0 is a 1 -accumulation point of D. Since we can prove by the similar method that any point of $\bar{B}(0,1)-\{0\}$ is 1 -accumulation point of D, D is a 1 -dense subset of R^{m}.

Theorem 2.11. Let D be a nonempty subset of an open subset E of R^{m} and $\bar{D}=D_{(0)}^{\prime} \cup D$. Then $E \subseteq \underset{b \in \bar{D}}{\cup} \bar{B}\left(b, \epsilon_{0}\right)$ if and only if D is ϵ_{0}-dense in E.

Proof. (\Rightarrow) By lemma 2.10. \bar{D} is $\epsilon_{0}-$ dense in E. In order to show that D is ϵ_{0}-dense in E, let any element $a \in E$ and any positive real number $\epsilon>\epsilon_{0}$ be given. Since $\frac{\epsilon+\epsilon_{0}}{2}>\epsilon_{0}$ and \bar{D} is ϵ_{0}-dense in E, we have $B\left(a, \frac{\epsilon+\epsilon_{0}}{2}\right) \cap(\bar{D}-\{a\}) \neq \emptyset$. Hence there is an element $b \in \bar{D}-\{a\}$ such that $\|b-a\|<\frac{\epsilon+\epsilon_{0}}{2}$. Since $b \in \bar{D}-\{a\}$, we have $b \in D-\{a\}$ or $b \in D_{(0)}^{\prime}-\{a\}$. If $b \in D-\{a\}$ then we have

$$
b \in B\left(a, \frac{\epsilon+\epsilon_{0}}{2}\right) \cap(D-\{a\}) \subseteq B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset
$$

which implies that $a \in D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$. On the other hand, if $b \in D_{(0)}^{\prime}-\{a\}$ then there exists an element $c \in D-\{a\}$ such that $\|c-b\|<\frac{\epsilon-\epsilon_{0}}{2}$. Hence we have

$$
\|c-a\| \leq\|c-b\|+\|b-a\|<\frac{\epsilon-\epsilon_{0}}{2}+\frac{\epsilon+\epsilon_{0}}{2}=\epsilon .
$$

Thus $c \in B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ which also implies that $a \in D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$. (\Leftarrow) Let any element $a \in E$ be given. If $a \in D$ then we are done since $a \in \bar{B}\left(a, \epsilon_{0}\right)$. Now suppose that $a \notin D$. Then $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$. Since $\epsilon_{0}+\frac{1}{n}>\epsilon_{0}$ for each natural number $n \in N$, we have

$$
B\left(a, \epsilon_{0}+\frac{1}{n}\right) \cap(D-\{a\}) \neq \emptyset .
$$

Hence there exists a single-valued sequence $\left\{b_{n}\right\}$ of the elements of D such that

$$
b_{n} \in B\left(a, \epsilon_{0}+\frac{1}{n}\right) \cap(D-\{a\}) .
$$

Since $\left\{b_{n}\right\}$ is a bounded sequence of elements of R^{m}, by applying the Bolzano-Weierstrass theorem, there is a convergent subsequence $\left\{b_{n_{k}}\right\}$ of $\left\{b_{n}\right\}$ such that $\lim _{k \rightarrow \infty} b_{n_{k}}=b_{0}$ for some vector $b_{0} \in R^{m}$. Since \bar{D} is closed in R^{m}, we have $b_{0} \in \bar{D}$. Moreover, since $\left\|b_{n_{k}}-a\right\|<\epsilon_{0}+\frac{1}{n_{k}}$, by taking the limit as $k \rightarrow \infty$, we have $\left\|b_{0}-a\right\| \leq \epsilon_{0}$. Thus $a \in B\left(b_{0}, \epsilon_{0}\right) \subseteq \underset{b \in \bar{D}}{\cup \bar{B}}\left(b, \epsilon_{0}\right)$. This completes the proof.

For example, consider the cartesian product Z^{m} of the set Z of all the integers. Since the length of the diagonal line of the unit m-dimensional cube in Z^{m} is $\sqrt{1^{2}+\cdots+1^{2}}=\sqrt{m}$, we have $R^{m}=\underset{a \in Z^{m}}{ } \bar{B}\left(a, \frac{\sqrt{m}}{2}\right)$. Hence Z^{m} is $\frac{\sqrt{m}}{2}$-dense in R^{m} since $Z^{m}=\overline{Z^{m}}$. But the closed set Z^{m} is not ϵ_{0}-dense in R^{m} for each $0 \leq \epsilon_{0}<\frac{\sqrt{m}}{2}$ since $R^{m} \neq \underset{a \in Z^{m}}{\cup} \bar{B}\left(a, \epsilon_{0}\right)$ in this case.

Theorem 2.12. Let D be a subset of an open subset E of R^{m} and $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. Then D is $\epsilon_{0}-$ dense in E if and only if for each positive real number $\epsilon>\epsilon_{0}$, we have $E \subseteq \cup \underset{b \in D}{\cup} \bar{B}(b, \epsilon)$.

Proof. (\Rightarrow) Suppose that D is $\epsilon_{0}-$ dense in E and let any positive real number $\epsilon>\epsilon_{0}$ be given. For a vector $a \in E$, if $a \in D$ then we are done since $a \in \bar{B}(a, \epsilon)$. Now suppose that $a \in E-D$. Since D is $\epsilon_{0}-$ dense in E and $\epsilon>\epsilon_{0}$, we have $B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$. Thus there exists
an element $b \in D$ such that $b \in B(a, \epsilon)$. Then we also have $a \in B(b, \epsilon)$. Hence we have

$$
a \in B(b, \epsilon) \subseteq \bar{B}(b, \epsilon) \subseteq \cup_{b \in D} \bar{B}(b, \epsilon) .
$$

(\Leftarrow) Let any element $a \in E$ be given. And let any positive real number $\epsilon>\epsilon_{0}$ be given. If $a \in D$ then we are done since $a \in D \cup D_{\left(\epsilon_{0}\right)}^{\prime}$. Suppose that $a \in E-D$. Since $E \subseteq \underset{b \in D}{\cup} \bar{B}\left(b, \epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}\right)$, we have $a \in$ $\bar{B}\left(b_{\epsilon}, \epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}\right)$ for some element $b_{\epsilon} \in D$ since $\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}>\epsilon_{0}$. Hence we have $b_{\epsilon} \in \bar{B}\left(a, \epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}\right)$. Since $\epsilon_{0}+\frac{\epsilon-\epsilon_{0}}{2}<\epsilon_{0}+\epsilon-\epsilon_{0}=\epsilon$, we have $b_{\epsilon} \in \bar{B}(a, \epsilon)$ which implies that $B(a, \epsilon) \cap(D-\{a\}) \neq \emptyset$ since this set contains an element $b_{\epsilon} \in D$ and $a \neq b_{\epsilon}$. Therefore, we have $a \in D_{\left(\epsilon_{0}\right)}^{\prime}$ which completes the proof.

Corollary 2.13. Let D be a subset of an open subset E of R^{m} and $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. Then D is not ϵ_{0}-dense in E if and only if we have $B\left(a_{1}, \epsilon_{1}\right) \cap D=\emptyset$ for some positive real number $\epsilon_{1}>\epsilon_{0}$ and some vector $a_{1} \in E$.

Proof. (\Rightarrow) Suppose that D is not $\epsilon_{0}-$ dense in E. Then E is not a subset of the union $\underset{b \in D}{\cup} \bar{B}\left(b, \epsilon_{1}\right)$ for some positive real number $\epsilon_{1}>\epsilon_{0}$ by theorem 2.12. Hence there is an element $a_{1} \in E$ such that $a_{1} \notin \bar{B}\left(a, \epsilon_{1}\right)$ for all $a \in D$. And $a_{1} \notin D$ since $a \in \bar{B}\left(a, \epsilon_{1}\right)$ for all $a \in D$. Now we have $B\left(a_{1}, \epsilon_{1}\right) \cap D=\emptyset$, for if $a \in B\left(a_{1}, \epsilon_{1}\right) \cap D=\emptyset$ for some $a \in D$ then $a_{1} \in B\left(a, \epsilon_{1}\right) \subseteq \bar{B}\left(a, \epsilon_{1}\right)$ which is a contradiction. (\Leftarrow) Conversely, suppose that $B\left(a_{1}, \epsilon_{1}\right) \cap D=\emptyset$ for some positive real number $\epsilon>\epsilon_{0}$ and some vector $a_{1} \in E$. Then we have, for each $a \in D$,

$$
\left\|a_{1}-a\right\| \geq \epsilon_{1}>\frac{\epsilon_{1}+\epsilon_{0}}{2}
$$

Thus we have

$$
a_{1} \notin \cup_{b \in D} \bar{B}\left(b, \frac{\epsilon_{1}+\epsilon_{0}}{2}\right) \text { and } E \nsubseteq \bigcup_{b \in D} \bar{B}\left(b, \frac{\epsilon_{1}+\epsilon_{0}}{2}\right) .
$$

Since $\frac{\epsilon_{1}+\epsilon_{0}}{2}>\epsilon_{0}, D$ is not ϵ_{0}-dense in E by theorem 2.12.
Theorem 2.14. Let D be a subset of an open subset E of R^{m} and ϵ_{0} be any, but fixed, positive real number. Then D is ϵ_{0}-dense in E if and only if D is ϵ_{1}-dense in E for each positive real number $\epsilon_{1}>\epsilon_{0}$.

Proof. (\Rightarrow) This follows immediately from the fact that $\epsilon>\epsilon_{1} \Rightarrow \epsilon>$ ϵ_{0}. \Leftarrow Suppose that D is not $\epsilon_{0}-$ dense in E. Then, by corollary 2.13, there exists a positive real number $\epsilon_{1}>\epsilon_{0}$ and a vector $a_{1} \in E$ such
that D is disjoint from $B\left(a_{1}, \epsilon_{1}\right)$. Now consider the positive real number $\frac{\epsilon_{1}+\epsilon_{0}}{2}$. Then we have

$$
\exists \epsilon_{1}>\frac{\epsilon_{1}+\epsilon_{0}}{2} \text { and } \exists a_{1} \in E \text { s.t. } B\left(a_{1}, \epsilon_{1}\right) \cap D=\emptyset .
$$

Thus, by corollary 2.13 again, D is not $\frac{\epsilon_{1}+\epsilon_{0}}{2}$-dense in E. Since $\frac{\epsilon_{1}+\epsilon_{0}}{2}>$ ϵ_{0}, this contradicts to the fact that D is ϵ-dense in E for each positive real number $\epsilon>\epsilon_{0}$. Hence D is $\epsilon_{0}-$ dense in E.

Corollary 2.15. Let D be a closed subset of an open subset E of R^{m} and $\epsilon_{0} \geq 0$ be any, but fixed, non-negative real number. Then $E \subseteq \cup_{b \in D} \bar{B}(b, \epsilon)$ for each positive real number $\epsilon>\epsilon_{0}$ if and only if $E \subseteq \cup \cup \bar{B}\left(b, \epsilon_{0}\right)$.

Proof. (\Rightarrow) By theorem 2.12, D is $\epsilon_{0}-$ dense in E. Then, since $D=\bar{D}$ is a closed subset of R^{m}, we have $E \subseteq \cup \cup \bar{B}\left(b, \epsilon_{0}\right)$ by theorem 2.11. (\Leftarrow) This follows immediately from the inclusion $\bar{B}\left(b, \epsilon_{0}\right) \subseteq \bar{B}(b, \epsilon)$ for each positive real number $\epsilon>\epsilon_{0}$ and each element $b \in E$.

Note that if $E \subseteq \bigcup_{b \in D} \bar{B}\left(b, \epsilon_{2}\right)$ for some positive real number $\epsilon_{2}<\epsilon_{0}$, then D is ϵ_{0}-dense in E since D is ϵ_{2}-dense in E and $\epsilon_{2}<\epsilon_{0}$ by the lemma 2.10.

3. Epsilon zero dense ace

In this section, we investigate about the concept of the ϵ_{0}-dense ace of a given ϵ_{0}-dense subset and research the shape of the point of the ϵ_{0}-dense ace. Throughout this section, $\epsilon_{0} \geq 0$ denotes any, but fixed, non-negative real number.

Definition 3.1. Let D be an ϵ_{0}-dense subset of an open subset E of R^{m}. For an element $a \in D$, the point a is called a point of the $\epsilon_{0}-$ dense ace of D in E if and only if $D-\{a\}$ is not ϵ_{0}-dense in E.

Note that 0 -dense subset of E has no points of the ϵ_{0}-dense ace.
Lemma 3.2. Let D be an ϵ_{0}-dense subset of an open subset E of R^{m} with $\epsilon_{0}>0$. For an element $a \in D$, if $a \notin D_{\left(\epsilon_{0}\right)}^{\prime}$ then a is a point of the $\epsilon_{0}-$ dense ace of D. And the converse is not true in general.

Proof. Suppose that $a \notin D_{\left(\epsilon_{0}\right)}^{\prime}$. Then there is a positive real number ϵ_{1} with $\epsilon_{1}>\epsilon_{0}$ such that $B\left(a, \epsilon_{1}\right) \cap(D-\{a\})=\emptyset$. By taking the minimum $\min \left(\epsilon_{1}, 2 \epsilon_{0}\right)$, we may assume that $\epsilon_{0}<\epsilon_{1} \leq 2 \epsilon_{0}$. Now pick up
a vector $b \in E$ so close that $\|b-a\| \leq \frac{\epsilon_{1}-\epsilon_{0}}{3}$. Indeed, this is possible since $a \in D \subseteq E$ and E is an open subset of R^{m}. Then we have, for any element $x \in B\left(b, \epsilon_{0}+\frac{\epsilon_{1}-\epsilon_{0}}{3}\right)$,

$$
\|x-a\| \leq\|x-b\|+\|b-a\|<\epsilon_{0}+\frac{\epsilon_{1}-\epsilon_{0}}{3}+\frac{\epsilon_{1}-\epsilon_{0}}{3}<\epsilon_{1}
$$

which implies that $x \in B\left(a, \epsilon_{1}\right)$. Hence $B\left(b, \epsilon_{0}+\frac{\epsilon_{1}-\epsilon_{0}}{3}\right) \subseteq B\left(a, \epsilon_{1}\right)$. Thus

$$
B\left(b, \epsilon_{0}+\frac{\epsilon_{1}-\epsilon_{0}}{3}\right) \cap(D-\{a\}) \subseteq B\left(a, \epsilon_{1}\right) \cap(D-\{a\})=\emptyset
$$

Since $\epsilon_{0}+\frac{\epsilon_{1}-\epsilon_{0}}{3}>\epsilon_{0}, b \notin D$ and $b \neq a$, this implies that

$$
b \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime} \cup(D-\{a\})
$$

Thus $D-\{a\}$ is not ϵ_{0}-dense in E. Hence a is a point of the $\epsilon_{0}-$ dense ace of D in E. On the other hand, put

$$
D=\left[R^{m}-B((1.25,0, \cdots, 0), 1.25)\right] \cup\{(1,0, \cdots, 0)\}
$$

Then we have
$\cup_{a \in D} \bar{B}(a, 1)=\left[R^{m}-B((1.25,0, \cdots, 0), 0.25)\right] \cup B((1,0, \cdots, 0), 1)=R^{m}$.
Since D is closed, D is a 1 -dense subset of R^{m} by theorem 2.11. But we have
$B((1.25,0, \cdots, 0), 1.25) \cap(D-\{(1,0, \cdots, 0)\}-\{(1.25,0, \cdots, 0)\})=\emptyset$.
Thus we have
$(1.25,0, \cdots, 0) \notin[D-\{(1,0, \cdots, 0)\}]_{(1)}^{\prime} \cup(D-\{(1,0, \cdots, 0)\})$
which implies that $D-\{(1,0, \cdots, 0)\}$ is not 1 -dense in R^{m}. Thus $(1,0, \cdots, 0)$ is a point of the $1-$ dense ace of D and $(1,0, \cdots, 0) \in D_{(1)}^{\prime}$.

Now we have the following theorem.
Theorem 3.3. Let D be an ϵ_{0}-dense subset of the non-empty and open subset E of R^{m} with $\epsilon_{0}>0$. For an element $a \in D$, a is a point of the ϵ_{0}-dense ace of D in E if and only if there is a real number $\epsilon_{1}>\epsilon_{0}$ and a point $b \in E$ such that $B\left(b, \epsilon_{1}\right) \cap D=\{a\}$. In this case, the point $b \in E$ must satisfy the relation $\|a-b\| \leq \epsilon_{0}$.

Proof. (\Leftarrow) Assume that $B\left(b, \epsilon_{1}\right) \cap D=\{a\}$ for some real number $\epsilon_{1}>\epsilon_{0}$ and some element $b \in E$. Then $B\left(b, \epsilon_{1}\right) \cap(D-\{a\})=\emptyset$. Hence we have $b \notin(D-\{a\})$ and $B\left(b, \epsilon_{1}\right) \cap(D-\{a\}-\{b\})=\emptyset$. Since $\epsilon_{1}>\epsilon_{0}$, this implies that $b \notin(D-\{a\})_{\left(\epsilon_{0}\right)}^{\prime}$. Since $b \in E$, this implies that $D-\{a\}$ is not an ϵ_{0}-dense subset of E. Thus a is a point of the $\epsilon_{0}-$ dense ace
of D in $E .(\Rightarrow)$ Conversely, suppose that a is a point of $\epsilon_{0}-$ dense ace of D in E. Then $D-\{a\}$ is not $\epsilon_{0}-$ dense in E. Hence there is a point $b \in E$ such that

$$
b \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime} \cup(D-\{a\})
$$

Then we must have

$$
b \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime} \text { and } b \notin(D-\{a\})=D \cap\{a\}^{C} .
$$

Since $b \in\left(D \cap\{a\}^{C}\right)^{C}=D^{C} \cup\{a\}$, we have the following two cases.
Case 1. The case where $b \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime}$ and $b \in D^{C}$.
In this case, since $b \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime}$, we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. } B\left(b, \epsilon_{1}\right) \cap\{[D-\{a\}]-\{b\}\}=\emptyset .
$$

But we must have $b \in D_{\left(\epsilon_{0}\right)}^{\prime}$ since $b \in D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$ and $b \notin D$. Hence we have

$$
\forall \epsilon>\epsilon_{0}, B(b, \epsilon) \cap\{D-\{b\}\} \neq \emptyset
$$

Since $\epsilon>\epsilon_{0}$ was arbitrary, we must have

$$
B(b, \epsilon) \cap D=\{a\}
$$

for all positive real number ϵ such that $\epsilon_{0}<\epsilon \leq \epsilon_{1}$. Since $\epsilon_{0}<\epsilon \leq \epsilon_{1}$ was arbitrary, we have $\bar{B}\left(b, \epsilon_{0}\right) \cap D=\{a\}$. In particular, we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. } B\left(b, \epsilon_{1}\right) \cap D=\{a\}
$$

for the point $b \in E$.
Case 2. The case where $b \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime}$ and $b=a$.
In this case, since $b=a \notin[D-\{a\}]_{\left(\epsilon_{0}\right)}^{\prime}$, we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. } B\left(a, \epsilon_{1}\right) \cap\{[D-\{a\}]-\{a\}\}=\emptyset .
$$

Therefore, we have $\exists \epsilon_{1}>\epsilon_{0}$ s.t. $B\left(b, \epsilon_{1}\right) \cap D=\{a\}$ for the element $b=a$. This completes the proof of the sufficient condition in this theorem. Moreover, if the point $b \in E$ in this theorem satisfies $\|b-a\|>\epsilon_{0}$, then $b \notin D_{\left(\epsilon_{0}\right)}^{\prime} \cup D$ since

$$
\exists \epsilon_{2}=\|b-a\|>\epsilon_{0} \text { s.t. } B\left(b, \epsilon_{2}\right) \cap\{D-\{b\}\}=\emptyset \text { and } b \notin D .
$$

This is a contradiction to the fact that D is ϵ_{0}-dense in E.
Let's denote the set of all the points of ϵ_{0}-dense ace of D in R^{m} by $\operatorname{dap}_{\epsilon_{0}}(D)$ or $\operatorname{dap}_{\epsilon_{0}}\left(D ; R^{m}\right)$ and in E by $\operatorname{dap}_{\epsilon_{0}}(D ; E)$.

Corollary 3.4. $\operatorname{dap}_{\epsilon_{0}}(D ; E)$ is countable and closed for any positive real number $\epsilon_{0}>0$.

Proof. By the above theorem 3.3, $a \in \operatorname{dap}_{\epsilon_{0}}(D ; E)$ if and only if there is a positive real number $\epsilon_{a}>\epsilon_{0}$ and a point $b_{a} \in E$ such that $B\left(b_{a}, \epsilon_{a}\right) \cap$ $D=\{a\}$. Hence any closed ball with radius ϵ_{0} has at most finite number of the points of ϵ_{0}-dense ace of D in E. Therefore, $\operatorname{dap}_{\epsilon_{0}}(D ; E)$ is countable and closed for any positive real number $\epsilon_{0}>0$.

Theorem 3.5. (Double Capacity) Let D be an ϵ_{0}-dense subset of R^{m} and $\epsilon_{0}>0$ be any, but fixed, positive real number. If dap $\epsilon_{0}\left(D ; R^{m}\right) \neq$ \emptyset then D is not $\frac{\epsilon_{0}}{2}$-dense in R^{m}. Equivalently, if D is ϵ_{0}-dense in R^{m} then $\operatorname{dap}_{2 \epsilon_{0}}\left(D ; R^{m}\right)=\emptyset$.

Proof. Choose an element $a \in \operatorname{dap}_{\epsilon_{0}}\left(D ; R^{m}\right) \neq \emptyset$. By the above theorem 3.3 with $E=R^{m}$, there is a positive real number $\epsilon_{a}>\epsilon_{0}$ and a point $b_{a} \in R^{m}$ such that $B\left(b_{a}, \epsilon_{a}\right) \cap D=\{a\}$. Now choose an element $c \in R^{m}$ such that

$$
c= \begin{cases}\frac{1}{2}\left(2 b_{a}+\epsilon_{a} \frac{b_{a}-a}{\left\|b_{a}-a\right\|}\right) & \left(\text { if } b_{a} \neq a\right) \\ \frac{1}{2}\left\{2 b_{a}+\epsilon_{a}(1,0, \cdots, 0)\right\} & \left(\text { if } b_{a}=a\right)\end{cases}
$$

Note that c is the center point of the line segment joining the point b_{a} and the point $b_{a}+\epsilon_{a} \frac{b_{a}-a}{\left\|b_{a}-a\right\|}$ when $b_{a} \neq a$. Then we have $a \notin B\left(c, \frac{\epsilon_{a}}{2}\right)$ and

$$
\exists \epsilon_{1}=\frac{\epsilon_{a}}{2}>\frac{\epsilon_{0}}{2}, \text { s.t. } B\left(c, \epsilon_{1}\right) \cap D=\emptyset .
$$

Hence D is not $\frac{\epsilon_{0}}{2}$-dense in R^{m} by corollary 2.13 . Finally, if D is $\epsilon_{0}-$ dense in R^{m} then D is $2 \epsilon_{0}$-dense in R^{m} and $\operatorname{dap}_{2 \epsilon_{0}}\left(D ; R^{m}\right)=\emptyset$.

Note that the theorem above does not hold for an open subset E of R^{m} in general. For example, if we choose an open subset

$$
E=B((0, \cdots, 0), 1) \cup B((6,0, \cdots, 0), 1)
$$

and a subset $D=\{(0, \cdots, 0),(6,0, \cdots, 0)\}$ then D is 3 -dense subset of E and $d a p_{2}(D ; E)=D$. But D is also 1.5-dense in E and $\operatorname{dap}_{6}(D ; E)=$ $D \neq \emptyset$.

However, we have the following theorem.
Theorem 3.6. Let D be an $\epsilon_{0}-$ dense subset of an open subset E of R^{m} and $\epsilon_{0}>0$ be any, but fixed, positive real number. Suppose that $\underset{b \in D}{\cup} B\left(b, \epsilon_{0}\right) \subseteq E$. If $\operatorname{dap}_{\epsilon_{0}}(D ; E) \neq \emptyset$ then D is not $\frac{\epsilon_{0}}{2}$-dense in E. Equivalently, if D is ϵ_{0}-dense in E then $\operatorname{dap}_{2 \epsilon_{0}}(D ; E)=\emptyset$.

Proof. Choose an element $a \in \operatorname{dap}_{\epsilon_{0}}(D ; E) \neq \emptyset$. By the above theorem 3.3, there is a positive real number $\epsilon_{a}>\epsilon_{0}$ and a point $b_{a} \in E$
such that $B\left(b_{a}, \epsilon_{a}\right) \cap D=\{a\}$. Since the point $b_{a} \in E$ satisfies the condition $\left\|b_{a}-a\right\| \leq \epsilon_{0}$, we may assume without the loss of generality that $\epsilon_{a}<\frac{3}{2} \epsilon_{0}$. Now choose an element $c \in R^{m}$ such that

$$
c= \begin{cases}b_{a} & \left(\text { if }\left\|b_{a}-a\right\|>\frac{\epsilon_{0}}{2}\right) \\ \frac{1}{2}\left(a+b_{a}+\epsilon_{a} \frac{b_{a}-a}{\left\|b_{a}-a\right\|}\right) & \left(\text { if } 0<\left\|b_{a}-a\right\| \leq \frac{\epsilon_{0}}{2}\right) \\ a+\frac{\epsilon_{0}+\epsilon_{a}}{4}(1,0, \cdots, 0) & \left(\text { if } b_{a}=a\right)\end{cases}
$$

Now the following three cases occur.
Case 1. The case where $\left\|b_{a}-a\right\|>\frac{\epsilon_{0}}{2}$.
In this case, we have $c=b_{a} \in E$. Choose

$$
\epsilon_{1}=\frac{\epsilon_{0}}{2}+\frac{1}{2}\left(\left\|b_{a}-a\right\|-\frac{\epsilon_{0}}{2}\right)=\frac{\epsilon_{0}+2\left\|b_{a}-a\right\|}{4} .
$$

Then we have

$$
\begin{aligned}
\forall x \in B\left(c, \epsilon_{1}\right) \Rightarrow\left\|x-b_{a}\right\| & =\|x-c\|<\epsilon_{1} \\
& =\frac{\epsilon_{0}+2\left\|b_{a}-a\right\|}{4} \leq \frac{3}{4} \epsilon_{0}<\epsilon_{a}
\end{aligned}
$$

Hence we have $B\left(c, \epsilon_{1}\right) \subseteq B\left(b_{a}, \epsilon_{a}\right)$. And, since $\left\|b_{a}-a\right\|>\frac{\epsilon_{0}}{2}$, we have

$$
\exists \epsilon_{1}=\frac{\epsilon_{0}+2\left\|b_{a}-a\right\|}{4}>\frac{\epsilon_{0}}{2}, \exists c=b_{a} \in E \text { s.t. } B\left(c, \epsilon_{1}\right) \cap D=\emptyset .
$$

Case 2. The case where $0<\left\|b_{a}-a\right\| \leq \frac{\epsilon_{0}}{2}$.
In this case, let's pick up $c=\frac{1}{2}\left(a+b_{a}+\epsilon_{a} \frac{b_{a}-a}{\left\|b_{a}-a\right\|}\right)$. Then, since $\epsilon_{a}<\frac{3}{2} \epsilon_{0}$, we have

$$
\begin{aligned}
\|c-a\| & =\left\|\frac{1}{2}\left(b_{a}-a+\epsilon_{a} \frac{b_{a}-a}{\left\|b_{a}-a\right\|}\right)\right\| \\
& =\frac{\left\|b_{a}-a\right\|}{2}\left(1+\frac{\epsilon_{a}}{\left\|b_{a}-a\right\|}\right) \\
& =\frac{1}{2}\left(\left\|b_{a}-a\right\|+\epsilon_{a}\right) \\
& <\frac{1}{2}\left(\frac{\epsilon_{0}}{2}+\frac{3 \epsilon_{0}}{2}\right)=\epsilon_{0} .
\end{aligned}
$$

Hence $c \in B\left(a, \epsilon_{0}\right) \subseteq \underset{b \in D}{\cup} B\left(b, \epsilon_{0}\right) \subseteq E$. Now if we choose $\epsilon_{1}=\frac{1}{2}\left(\| b_{a}-\right.$ $\left.a \|+\epsilon_{a}\right)$ then $a \notin B\left(c, \epsilon_{1}\right)$ and $\epsilon_{a}>\epsilon_{1}>\frac{\epsilon_{a}}{2}>\frac{\epsilon_{0}}{2}$. And we have

$$
\begin{aligned}
x \in B\left(c, \epsilon_{1}\right) \Rightarrow\left\|x-b_{a}\right\| & \leq\|x-c\|+\left\|c-b_{a}\right\| \\
& <\epsilon_{1}+\left\|\frac{1}{2}\left(a-b_{a}+\epsilon_{a} \frac{b_{a}-a}{\left\|b_{a}-a\right\|}\right)\right\| \\
& =\frac{\left\|b_{a}-a\right\|+\epsilon_{a}}{2}+\frac{1}{2}\left\|b_{a}-a\right\| \cdot\left|-1+\frac{\epsilon_{a}}{\left\|b_{a}-a\right\|}\right| \\
& =\frac{\left\|b_{a}-a\right\|+\epsilon_{a}}{2}+\frac{1}{2}\left(\epsilon_{a}-\left\|b_{a}-a\right\|\right)=\epsilon_{a} .
\end{aligned}
$$

Thus $B\left(c, \epsilon_{1}\right) \subseteq B\left(b_{a}, \epsilon_{a}\right)$. Therefore, we have

$$
\exists \epsilon_{1}=\frac{1}{2}\left(\left\|b_{a}-a\right\|+\epsilon_{a}\right)>\frac{\epsilon_{0}}{2}, \exists c \in E \text { s.t. } B\left(c, \epsilon_{1}\right) \cap D=\emptyset .
$$

Case 3. The case where $b_{a}=a$.
In this case, let's pick up $c=a+\frac{\epsilon_{0}+\epsilon_{a}}{4}(1,0, \cdots, 0)$. Then we have

$$
\|c-a\|=\left\|\frac{\epsilon_{0}+\epsilon_{a}}{4}(1,0, \cdots, 0)\right\|<\frac{\epsilon_{0}+\frac{3}{2} \epsilon_{0}}{4}=\frac{5}{8} \epsilon_{0}<\epsilon_{0} .
$$

Hence $c \in B\left(a, \epsilon_{0}\right) \subseteq \cup_{b \in D} B\left(b, \epsilon_{0}\right) \subseteq E$. Now if we choose $\epsilon_{1}=\frac{\epsilon_{0}+\epsilon_{a}}{4}>\frac{\epsilon_{0}}{2}$ then we have

$$
\begin{aligned}
x \in B\left(c, \epsilon_{1}\right) \Rightarrow\left\|x-b_{a}\right\| & =\|x-a\| \\
& \leq\|x-c\|+\|c-a\| \\
& <\epsilon_{1}+\left\|\frac{\epsilon_{0}+\epsilon_{a}}{4}(1,0, \cdots, 0)\right\| \\
& =\frac{\epsilon_{0}+\epsilon_{a}}{4}+\frac{\epsilon_{0}+\epsilon_{a}}{4}=\frac{\epsilon_{0}+\epsilon_{a}}{2}<\epsilon_{a} .
\end{aligned}
$$

Thus $B\left(c, \epsilon_{1}\right) \subseteq B\left(b_{a}, \epsilon_{a}\right)$. Therefore, we have

$$
\exists \epsilon_{1}=\frac{\epsilon_{0}+\epsilon_{a}}{4}>\frac{\epsilon_{0}}{2}, \exists c \in E \text { s.t. } B\left(c, \epsilon_{1}\right) \cap D=\emptyset .
$$

Hence D is not $\frac{\epsilon_{0}}{2}-$ dense in E by corollary 2.13. Finally, if D is $\epsilon_{0}-$ dense in E then D is $2 \epsilon_{0}$-dense in E and $d a p_{2 \epsilon_{0}}(D ; E)=\emptyset$.

Definition 3.7. Let D be a subset of a non-empty and open subset E of R^{m}. We call the density number of D in E the minimum

$$
D N(D ; E)=\min \left\{\epsilon_{0} \geq 0 \mid D \text { is } \epsilon_{0} \text {-dense in } E\right\} .
$$

And we call the density number of $a \in D$ in E the minimum

$$
D N(a ; E)=\min \left\{\epsilon_{0} \geq 0 \mid a \in \operatorname{dap}_{\epsilon_{0}}(D ; E)\right\} .
$$

Note that, by theorem 2.14, D is ϵ_{0}-dense in E if and only if D is ϵ_{1}-dense in E for each positive real number $\epsilon_{1}>\epsilon_{0}$. Hence the number $D N(D ; E)$ is well-defined.

On the other hand, $D N(a ; E)$ is also well-defined by the following lemma.

Lemma 3.8. Let D be a ϵ_{0}-dense subset of the non-empty and open subset E of R^{m} and $a \in \operatorname{dap}_{\epsilon_{0}}(D ; E)$. If $\beta=\operatorname{glb}\left\{\epsilon \geq 0 \mid a \in \operatorname{dap}_{\epsilon}(D ; E)\right\}$ then

$$
D N(a ; E)=\min \left\{\epsilon_{0} \geq 0 \mid a \in \operatorname{dap}_{\epsilon_{0}}(D ; E)\right\}=\beta .
$$

Proof. Suppose that $a \in \operatorname{dap}_{\epsilon_{0}}(D ; E)$. Since the set $\{\epsilon \geq 0 \mid a \in$ $\left.d a p_{\epsilon}(D ; E)\right\}$ contains the number ϵ_{0}, this set is non-empty and bounded below. Hence the infimum $\operatorname{glb}\left\{\epsilon \geq 0 \mid a \in \operatorname{dap}_{\epsilon}(D ; E)\right\}$ exists. Now let $\operatorname{glb}\left\{\epsilon \geq 0 \mid a \in \operatorname{dap}_{\epsilon}(D ; E)\right\}=\beta$. Then, for any positive real number γ such that $\beta<\gamma$, there is a positive real number ϵ_{2} such that $\beta<\epsilon_{2}<\gamma$ and $a \in \operatorname{dap}_{\epsilon_{2}}(D ; E)$. In particular, D is γ-dense in E since D is $\epsilon_{2}-$ dense and $\epsilon_{2}<\gamma$. Since $\beta<\gamma$ was arbitrary, D is β-dense in E by theorem 2.14. Moreover, since $a \in d a p_{\epsilon_{2}}(D ; E)$, there is a real number $\epsilon_{3}>\epsilon_{2}$ and a point $b \in E$ such that $B\left(b, \epsilon_{3}\right) \cap D=\{a\}$ by theorem 3.3. Since $\beta<\epsilon_{3}$, this implies that there is a real number $\epsilon_{3}>\beta$ and a point $b \in E$ such that $B\left(b, \epsilon_{3}\right) \cap D=\{a\}$. Thus $a \in \operatorname{dap}_{\beta}(D ; E)$ by theorem 3.3. Therefore, the infimum β must be the minimum.

On the other hand, for the points of ϵ_{0}-dense ace, we have the following lemma.

Lemma 3.9. Let $\left\{D_{j} \mid j \in J\right\}$ be a set of $\epsilon_{0}-$ dense subsets of the non-empty and open subset E of R^{m}. If $\underset{j \in J}{\cap} D_{j}=\emptyset$ then we have $d a p_{\epsilon_{0}}\left(\cup_{j \in J} D_{j} ; E\right)=\emptyset$.

Proof. Suppose that $a \in \operatorname{dap}_{\epsilon_{0}}\left(\cup_{j \in J} D_{j} ; E\right)$ for some element $a \in \underset{j \in J}{\cup} D_{j}$. Then the subset $\underset{j \in J}{\cup} D_{j}-\{a\}$ is not an ϵ_{0}-dense subset of E in E by the definition of the point of ϵ_{0}-dense ace. But, since $a \notin \underset{j \in J}{\cap} D_{j}=\emptyset$, we have $a \notin D_{j_{0}}$ for some index $j_{0} \in J$. Then we have $D_{j_{0}} \subseteq \cup_{j \in J} D_{j}-\{a\}$. Since $D_{j_{0}}$ is an ϵ_{0}-dense subset of E, this implies that $\underset{j \in J}{\cup} D_{j}-\{a\}$ must be an $\epsilon_{0}-$ dense subset of E in E. This is a contradiction. Consequently, we have $\operatorname{dap}_{\epsilon_{0}}\left(\underset{j \in J}{ } D_{j} ; E\right)=\emptyset$.

Theorem 3.10. Let $\left\{D_{j} \mid j \in J\right\}$ be a set of ϵ_{0}-dense subsets of the non-empty and open subset E of R^{m}. If a is a point of ϵ_{0}-dense ace of $\cup_{j \in J} D_{j}$ in E then $a \in \bigcap_{j \in J} \operatorname{dap}_{\epsilon_{0}}\left(D_{j} ; E\right)$. That is,

$$
d a p_{\epsilon_{0}}\left(\cup_{j \in J} D_{j} ; E\right) \subseteq \bigcap_{j \in J} d a p_{\epsilon_{0}}\left(D_{j} ; E\right)
$$

The converse is not true in general.
Proof. We first show that $a \in \bigcap_{j \in J} D_{j}$. Assume that $a \notin \cap_{j \in J} D_{j}$. Then $a \notin D_{j_{0}}$ for some index $j_{0} \in J$. Then we have $D_{j_{0}} \subseteq \underset{j \in J}{\cup} D_{j}-\{a\}$. Since $D_{j_{0}}$ is an ϵ_{0}-dense subset of E, this implies that $\bigcup_{j \in J}^{\cup} D_{j}-\{a\}$ is an ϵ_{0}-dense subset of E. Hence a is not a point of $\epsilon_{0}-$ dense ace of $\cup_{j \in J} D_{j}$ in E. This contradiction implies that $a \in \bigcap_{j \in J} D_{j}$. Now, since $a \in \operatorname{dap}_{\epsilon_{0}}\left(\cup_{j \in J} D_{j} ; E\right)$, we have

$$
\exists \epsilon_{1}>\epsilon_{0}, \exists b \in E \text { s.t.B }\left(b, \epsilon_{1}\right) \cap\left(\cup_{j \in J} D_{j}\right)=\{a\}
$$

by theorem 3.3. Since D_{j} is a subset of $\underset{j \in J}{\cup} D_{j}$ for each index $j \in J$, this implies that

$$
\exists \epsilon_{1}>\epsilon_{0}, \exists b \in E \text { s.t. } B\left(b, \epsilon_{1}\right) \cap D_{j}=\{a\}
$$

for each index $j \in J$. Thus $a \in \bigcap_{j \in J} \operatorname{dap}_{\epsilon_{0}}\left(D_{j} ; E\right)$ by theorem 3.3. On the other hand, let D_{1} and D_{2} be two subsets of R such that

$$
D_{1}=(-\infty,-1) \cup\{0\} \cup\left(\frac{3}{2}, \infty\right) \text { and } D_{2}=\left(-\infty,-\frac{3}{2}\right) \cup\{0\} \cup(1, \infty)
$$

Then $0 \in \operatorname{dap}_{1}\left(D_{1} ; R\right) \cap \operatorname{dap}\left(D_{2} ; R\right)$. But 0 is not a point of $1-$ dense ace of $D_{1} \cup D_{2}$ in R since $D_{1} \cup D_{2}=(-\infty,-1) \cup\{0\} \cup(1, \infty)$.

Example 3.11. Assume that the earth is a perfectly elliptical body. Let $F \subseteq R^{3}$ be the set of all the points on the surfaces consisting of the Korean land excluding all the islands. And let $E \supseteq F$ be an open subset of R^{3} such that the distance between F and the boundary of E is less than or equal to 1 meter. Now let $D \subseteq E$ be the set of all the points on the surface F consisting of all the express highways in the Republic of Korea. Then D is 100 -dense subset of E with respect to the unit of kilometers since any closed ball with center at E and with radius r with $r>100(\mathrm{~km})$ contains at least one point of D and since $E \subseteq \underset{a \in D}{\cup} \bar{B}\left(a, \epsilon_{1}\right)$ for each positive real number $\epsilon_{1}>100$.

References

[1] R. G. Bartle, The Elements of Real Analysis, John Willey and Sons, New York, 1964.
[2] H. L. Royden, Real Analysis, Macmillan pub. co. New York, 1968.
[3] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, New York, 1964.
*
Department of Mathematics
Seokyeong University
Seoul 02713, Republic of Korea
E-mail: gangage@skuniv.ac.kr

[^0]: Received February 08, 2018; Accepted February 01, 2019.
 2010 Mathematics Subject Classification: Primary 03H05.
 Key words and phrases: $\epsilon_{0}-$ limit; multiple valued sequences; $\epsilon_{0}-$ dense subset; ϵ_{0}-dense ace.

