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BLACK-SCHOLES EQUATION

Young S. Lee

Abstract. The purpose of this paper is to present approxima-
tion of C0-sequentially equicontinuous semigroups on a sequentially
complete locally convex space X.

1. Introduction

In 1973, Black and Scholes showed that under certain natural as-
sumptions about the financial market, the price of a European option
V , as a function of time τ and the current value of the underlying asset
s, satisfies the final value problem

∂V
∂τ = −1

2σ
2s2 ∂

2V
∂s2
− rs∂V∂s + rV, 0 ≤ τ ≤ τ̄ , 0 ≤ s <∞

V (s, τ̄) = h̄(s),

where σ is the volatility, r is the risk-free interest rate and τ̄ is the expiry
date. By introducing new variables

t =
1

2
(τ̄ − τ)σ2, x = ln s and u(x, τ) = V (s, τ),

we have the following initial value problem{
∂u
∂t = ∂2u

∂x2
+ (γ − 1)∂u∂x − γu,

u(x, 0) = h(x),

where γ = 2r/σ2 < 1 is a constant and h(x) = h̄(ex).
Rewriting this equation in terms of a differential operator A, we can

interpret this equation as an abstract Cauchy problem u′(t) = Au(t),
u(0) = f . It is well-known that the solution of the abstract Cauchy
problem for a linear operator A : D(A)→ X on a Banach space X and
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an initial value f ∈ D(A) is given by u(t)S(t)f if A is the generator
of a C0 semigroup {S(t) : t ≥ 0}. And thus the price oft he option
is obtained from the semigroup. Therefore it is crucial to determine
whether the Black-Scholes operator generates a C0 semigroup or not.

In this paper we will show that the differential operator

d

dx2
+ (γ − 1)

d

dx
− γI

is a perturbation of the square of a generator of a C0 group and it
generates a C0 semigroup on a suitable Banach space X and then we
will present the approximation of this semigroup by discrete semigroups.

2. Approximation

We recall some definitions of the C0 semigroup. For more information
about the C0 semigroup, see[P]. Let X be a Banach space.

Definition 2.1. A family {T (t) : t ≥ 0} of bounded linear operators
from X into itself is called a C0 semigroup on X if

(i) T (0) = I, the identity operator on X and T (t+ s) = T (t)T (s) for
t, s ≥ 0

(ii) limt→0 T (t)x = x for all x ∈ X.
{T (t) : t ≥ 0} is called a C0 semigroup of contractions if ‖T (t)‖ ≤ 1
for all t ≥ 0. If the properties (i) and (ii) hold for all t ∈ R, we call
{T (t) : t ∈ R} a C0 group.

The generator of {T (t) : t ≥ 0} is the linear operator A, given by

Ax = lim
h→0

1

h
(T (h)x− x)

with D(A) = {x ∈ X : limh→0
1
h(T (h)x− x) ∈ X}.

In order to trnsform Black-Scholes equation into the abstract Cauchy
problem, consider the Banach space of continuous functions vanishing
at infinity

X = C0(R) = {f ∈ C(R) : lim
|x|→∞

f(x) = 0}

with the usual supremum norm ‖f‖ = supx∈R |f(x)|.
Let (T (t)f)(x) = f(t + x) for t ∈ R, f ∈ X and x ∈ R. Then it is

not difficult to show that {T (t) : t ∈ R} is a C0 group on X. Let B be
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its generator. Then for f ∈ D(B) and x ∈ R, we have

(Bf)(x) = lim
h→0

1

h
(T (t)f(x)− f(x))

= lim
h→0

1

h
(f(x+ h)− f(x)) = f ′(x).

So f is differentiable and Bf ∈ X, that is,

D(B) ⊆ C1
0 (R) = {f ∈ C1(R) : f, f ′ ∈ X}.

Conversely, let f ∈ C1
0 (R). For x ∈ R,

|1
h

(T (h)f(x)− f(x))− f ′(x)|

= |1
h

(f(x+ h)− f(x))− f ′(x)| = |1
h

∫ h

0
(f ′(x+ τ)− f ′(x))dτ |

≤ sup
0≤|τ |≤|h|

|f ′(x+ τ)− f ′(x)| → 0,

as h→ 0 uniformly in x ∈ R, since f ′ ∈ C0(R) is uniformly continuous.
Therefore B = d/dx is a generator of a C0 semigroup {T (t) : t ∈ R} of
contractions.

Theorem 2.2. Let A be the operator defined by

A = B2 + (γ − 1)B =
d2

dx2
+ (γ − 1)

d

dx

with D(A) = D(B2) = {f ∈ D(B) : Bf ∈ D(B)}. Then A is the
generator of a contraction C0 semigroup {S(t) : t ≥ 0} on X.

Proof. Note that B is the generator of a contraction C0 group {T2(t) :
t ∈ R} on X, where T1(t)f(x) = f(x+ t) for x ∈ R. By Corollary 3.7.5
in [A], B2 is the generator of a bounded holomorphic C0 semigroups
{T1(t) : t ≥ 0} on X, which is given by

T2(t)f =
1√
4πt

∫ ∞
−∞

e−
s2

4t T1(s)fds.

For t ≥ 0, we have

‖T2(t)f‖ ≤
1√
4πt

∫ ∞
−∞

e−
s2

4t ‖T1(s)f‖ds ≤ ‖f‖.

So {T2(t) : t ≥ 0} is a contraction C0 semigroups on X.
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By Lemma 2.8 of chapter 1 in [P], for f ∈ D(B2) and ε > 0

||Bf || ≤ 2(‖B2f‖‖f‖)1/2 = 2(ε‖B2f‖)1/2(1

ε
‖f‖)1/2

≤ ε‖B2f‖+
1

ε
‖f‖

By Corollary 3.3 of chapter 3 in [P], B2 + (γ − 1)B is the generator of
a contraction C0 semigroup {S(t) : t ≥ 0}.

Remark 2.3. A− γI = d2/dx2 + (γ − 1)d/dx− γI generates a con-
traction C0 semigroup {e−γtS(t) : t ≥ 0} on X.

Next we will present the approximation of the C0 semigroup {S(t) :
t ≥ 0} generated by A.

Let Xn be the space of all bounded real sequences {ck}∞−∞ satisfying
lim|k|→∞ ck = 0 with the usual supremum norm. Define linear operators
Pn : X → Xn and En : Xn → X by

Pnf(x) = {f(k/n)}∞k=−∞ and En({ck}∞−∞) = g(x),

where g(k/n) = ck and g(x) is linear between two consecutive points
k/nand (k + 1)/n. Then {En} and {Pn} satisfy the assumption 6.1 in
chapter 3 in [P].

Theorem 2.4. Let A be the generator of a C0 semigroup {S(t) : t ≥
0} in Theorem. We define a linear operator F (ρn) : Xn → Xn by

F (ρn)(c) = {(1

2
− 2n2ρn)ck + n2ρn(ck+1 + ck−1)

+(
1

2
+ (γ − 1)nρn)ck − (γ − 1)nρnck−1}∞k=−∞

for c = {ck}∞k=−∞ in Xn and some ρn > 0 such that 4n2ρn < 1. Then
we have

lim
n→∞

‖F (ρn)knPnf − PnS(t)f‖ = 0

for f ∈ X and a sequence {kn} of positive integers such that limn→∞ knρn =
t.
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Proof. First we will show that F (ρn) is a contraction. For c =
{ck}∞k=−∞ in Xn

‖F (ρn)(c)‖ ≤ sup
k
{(1

2
− 2n2ρn)|ck|+ n2ρn(|ck+1|+ |ck−1|)

+(
1

2
+ (γ − 1)nρn|ck|+ (1− γ)nρn|ck−1|}

≤ ((
1

2
− 2n2ρn) + 2n2ρn + (

1

2
+ (γ − 1)nρn) + (1− γ)nρn)‖c‖

= ‖c‖.
So F (ρn) is a contraction. And we have for f ∈ D(A)

‖ 1

ρn
(F (ρn)− I)Pnf − PnAf‖

≤ sup |n2(f(
k + 1

n
)− 2f(

k

n
) + f(

k − 1

n
)− f ′′(k

n
)|

+ sup |n(f(
k + 1

n
)− f(

k

n
)− f ′(k

n
)|.

Since D(A) is dense in X, f ′(x) and f ′′(x) are uniformly continuous
on R. By Theorem 6.7 of chapter 3 in [P], the result follows.
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