Combination of a Rapidly Penetrating Agonist and a Slowly Penetrating Antagonist Affords Agonist Action of Limited Duration at the Cellular Level

  • Pearce, Larry V. (Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute) ;
  • Ann, Jihyae (Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University) ;
  • Blumberg, Peter M. (Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute) ;
  • Lee, Jeewoo (Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University)
  • 투고 : 2019.01.22
  • 심사 : 2019.03.18
  • 발행 : 2019.09.01


The capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) has been an object of intense interest for pharmacological development on account of its critical role in nociception. In the course of structure activity analysis, it has become apparent that TRPV1 ligands may vary dramatically in the rates at which they interact with TRPV1, presumably reflecting differences in their abilities to penetrate into the cell. Using a fast penetrating agonist together with an excess of a slower penetrating antagonist, we find that we can induce an agonist response of limited duration and, moreover, the duration of the agonist response remains largely independent of the absolute dose of agonist, as long as the ratio of antagonist to agonist is held constant. This general approach for limiting agonist duration under conditions in which absolute agonist dose is variable should have more general applicability.



연구 과제 주관 기관 : National Research Foundation of Korea (NRF), National Cancer Institute


  1. Barber, M. N., Sampey, D. B. and Widdop, R. E. (1999) $AT_2$ receptor stimulation enhances antihypertensive effect of $AT_1$ receptor antagonist in hypertensive rats. Hypertension 34, 1112-1116.
  2. Bertino, J. R., Levitt, M., McCullough, J. L. and Chabner, B. (1971) New approaches to chemotherapy with folate antagonists: use of leucovorin "rescue" and enzymic folate depletion. Ann. N. Y. Acad. Sci. 186, 486-495.
  3. Bevan, S., Hothi, S., Hughes, G., James, I. F., Rang, H. P., Shah, K., Walpole, C. S. and Yeats, J. C. (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107, 544-552.
  4. Bevan, S., Quallo, T. and Andersson, D. A. (2014) TRPV1. Handb. Exp. Pharmacol. 222, 207-245.
  5. Blumberg, P. M., Pearce, L. V. and Lee, J. (2011) TRPV1 activation is not an all-or-none event: TRPV1 partial agonism/antagonism and its regulatory modulation. Curr. Top. Med. Chem. 11, 2151-2158.
  6. Braun, D. C., Cao, Y., Wang, S., Garfield, S. H., Hur, G. M. and Blumberg, P. M. (2005) Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: real-time analysis using fluorescent ligands and proteins. Mol. Cancer Ther. 4, 141-150.
  7. Broad, L. M., Keding, S. J. and Blanco, M. J. (2008) Recent progress in the development of selective TRPV1 antagonists for pain. Curr. Top. Med. Chem. 8, 1431-1441.
  8. Busker, R. W. and van Helden, H. P. (1998) Toxicologic evaluation of pepper spray as a possible weapon for the Dutch police force: risk assessment and efficacy. Am. J. Forensic Med. Pathol. 19, 309-316.
  9. Cao, E., Liao, M., Cheng, Y. and Julius, D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113-118.
  10. Cui, M., Gosu, V., Basith, S., Hong, S. and Choi, S. (2016) Polymodal transient receptor potential vanilloid type 1 nocisensor: structure, modulators, and therapeutic applications. Adv. Prot. Chem. Struct. Biol. 104, 81-125.
  11. Feng, Z., Pearce, L. V., Xu, X., Yang, X., Yang, P., Blumberg, P. M. and Xie, X. Q. (2015) Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J. Chem. Inf. Model. 55, 572-588.
  12. Gavva, N. R., Tamir, R., Qu, Y., Klionsky, L., Zhang, T. J., Immke. D., Wang, J., Zhu, D.; Vanderah, T. W., Porreca, F., Doherty, E. M., Norman, M. H., Wild, K. D., Bannon, A. W., Louis, J.-C. and Treanor, J. J. S. (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 313, 474-484.
  13. Jung, J., Hwang, S. W., Kwak, J., Lee, S. Y., Kang, C. J., Kim, W. B., Kim, D. and Oh, U. (1999) Capsaicin bind to the intracellular domain of the capsaicin-activated ion channel. J. Neurosci. 19, 529-538.
  14. Kyle, D. J. and Tafesse, L. (2006) TRPV1 antagonists: a survey of the patent literature. Expert Opin. Ther. Pat. 16, 977-996.
  15. Lazar, J., Braun, D. C., Toth, A., Wang, Y., Pearce, L. V., Pavlyukovets, V. A., Blumberg, P. M., Garfield S. H., Wincovitch, S., Choi, H. K. and Lee, J. (2006) Kinetics of penetration influence the apparent potency of vanilloids on TRPV1. Mol. Pharmacol. 69, 1166-1173.
  16. Lee, J. H., Lee, Y., Ryu, H., Kang, D. W., Lee, J., Lazar, J., Pearce, L. V., Pavlyukovets, V. A., Blumberg, P. M. and Choi, S. (2011) Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. J. Comput. Aided Mol. Des. 25, 317-327.
  17. Lee, Y., Hong, S., Cui, M., Sharma, P. K., Lee, J. and Choi, S. (2015) Transient receptor potential vanilloid type 1 antagonists: a patent review (2011-2014). Expert Opin. Ther. Pat. 25, 291-318.
  18. Liu, L., Lo, Y. C., Chen, I. J. and Simon, S. A. (1997) The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J. Neurosci. 17, 4101-4111.
  19. Nagy, I., Friston, D., Valente, J. S., Torres Perez, J. V. and Andreou, A. P. (2014) Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. Prog. Drug Res. 68, 39-76.
  20. Nutt, D. J. (2010) Antagonist-agonist combinations as therapies for heroin addiction: back to the future? J. Psychopharm. 24, 141-145.
  21. Pearce, L. V., Toth, A., Ryu, H., Kang, D. W., Choi, H.-K., Jin, M.-K., Lee, J., Blumberg, P. M. (2008) Differential modulation of agonist and antagonist structure activity relations for rat TRPV1 by cyclosporin A and other protein phosphatase inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 377, 149-157.
  22. Pingle, S. C., Matta, J. A. and Ahern, G. P. (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb. Exp. Pharmacol. 179, 155-171.
  23. Rohacs, T. (2015) Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch. 467, 1851-1869.
  24. Seabrook, G. R., Sutton, K. G., Jarolimek, W., Hollingworth, G. J., Teague, S., Webb, J., Clark, N., Boyce, S., Kerby, J., Ali, Z., Chou, M., Middleton, R., Kaczorowski, G. and Jones, A. B. (2002) Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J. Pharmacol. Exp. Ther. 303, 1052-1060.
  25. Szallasi, A. and Sheta, M. (2012) Targeting TRPV1 for pain relief: limits, losers, and laurels. Expert Opin. Investig. Drugs 21, 1351-1369.
  26. Tozer, T. N. and Rowland, M. (2006) Introduction to Pharmacokinetics and Pharmacodynamics: the Quantitative Basis of Drug Therapy. Lippincott Williams & Wilkins, Philadelphia.
  27. Valenzano, K. J., Grant, E. R., Wu, G., Hachicha, M., Schmid, L., Tafesse, L., Sun, Q., Rotshteyn, Y., Francis, J., Limberis, J., Malik, S., Whittemore, E. R. and Hodges, D. (2003) N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effectice vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J. Pharmacol. Exp. Ther. 306, 377-386.
  28. Voight, E. A. and Kort, M. E. (2010) Transient receptor potential vanilloid- 1 antagonists: a survey of recent patent literature. Expert Opin. Ther. Pat. 20, 1107-1122.
  29. Wang, Q. J., Fang, T. W., Fenick, D., Garfield, S., Bienfait, B., Marquez, V. E. and Blumberg, P. M. (2000) The lipophilicity of phorbol esters as a critical factor in determining the pattern of translocation of protein kinase C delta fused to green fluorescent protein. J. Biol. Chem. 275, 12136-12146.
  30. Wang, Y., Toth, A., Tran, R., Szabo, T., Welter, J. D., Blumberg, P. M., Lee, J., Kang, S.-U., Lim, J.-O. and Lee, J. (2003) High-affinity partial agonists of the vanilloid receptor. Mol. Pharmacol. 64, 325-333.
  31. Winter, Z., Buhala, A., Otvos, F., Josvay, K., Vizler, C., Dombi, G. Szakonyi, G. and Olah, Z. (2013) Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel--an overview of the current mutational data. Mol. Pain 9, 30.
  32. Wrigglesworth, R., Walpole, C. S. J., Bevan, S., Campbell, E. A., Dray, A., Hughes, G. A., James, I., Masdin, K. J. and Winter, J. (1996) Analogues of capsaicin with agonist activity as novel analgesic agents: structure-activity studies. 4. Potent, orally active analgesics. J. Med. Chem. 39, 4942-4951.

피인용 문헌

  1. Functional Expression of TRPV1 Ion Channel in the Canine Peripheral Blood Mononuclear Cells vol.22, pp.6, 2021,