DOI QR코드

DOI QR Code

Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage

  • Park, Sangkyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Park, Jeong-A (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Jeon, Jae-Hyung (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
  • Received : 2019.03.19
  • Accepted : 2019.04.25
  • Published : 2019.09.01

Abstract

HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.

Keywords

References

  1. Abramson, J. S., Chen, W., Juszczynski, P., Takahashi, H., Neuberg, D., Kutok, J. L., Takeyama, K. and Shipp, M. A. (2009) The heat shock protein 90 inhibitor IPI-504 induces apoptosis of AKT-dependent diffuse large B-cell lymphomas. Br. J. Haematol. 144, 358-366. https://doi.org/10.1111/j.1365-2141.2008.07484.x
  2. Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Kumaraswamy, S., Boyapalle, S., Atadja, P., Seto, E. and Bhalla, K. (2005a) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729-26734. https://doi.org/10.1074/jbc.C500186200
  3. Bali, P., Pranpat, M., Swaby, R., Fiskus, W., Yamaguchi, H., Balasis, M., Rocha, K., Wang, H. G., Richon, V. and Bhalla, K. (2005b) Activity of suberoylanilide hydroxamic Acid against human breast cancer cells with amplification of her-2. Clin. Cancer Res. 11, 6382-6389. https://doi.org/10.1158/1078-0432.CCR-05-0344
  4. Banerji, U., Affolter, A., Judson, I., Marais, R. and Workman, P. (2008) BRAF and NRAS mutations in melanoma: potential relationships to clinical response to HSP90 inhibitors. Mol. Cancer. Ther. 7, 737-739. https://doi.org/10.1158/1535-7163.MCT-08-0145
  5. Banerji, U., O'Donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Maloney, A., Raynaud, F., Campbell, M., Walton, M., Lakhani, S., Kaye, S., Workman, P. and Judson, I. (2005a) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 23, 4152-4161. https://doi.org/10.1200/JCO.2005.00.612
  6. Banerji, U., Walton, M., Raynaud, F., Grimshaw, R., Kelland, L., Valenti, M., Judson, I. and Workman, P. (2005b) Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin. Cancer Res. 11, 7023-7032. https://doi.org/10.1158/1078-0432.CCR-05-0518
  7. Bao, R., Lai, C. J., Qu, H., Wang, D., Yin, L., Zifcak, B., Atoyan, R., Wang, J., Samson, M., Forrester, J., DellaRocca, S., Xu, G. X., Tao, X., Zhai, H. X., Cai, X. and Qian, C. (2009) CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin. Cancer Res. 15, 4046-4057. https://doi.org/10.1158/1078-0432.CCR-09-0152
  8. Beck, R., Dejeans, N., Glorieux, C., Creton, M., Delaive, E., Dieu, M., Raes, M., Leveque, P., Gallez, B., Depuydt, M., Collet, J. F., Calderon, P. B. and Verrax, J. (2012) Hsp90 is cleaved by reactive oxygen species at a highly conserved N-terminal amino acid motif. PLoS ONE 7, e40795. https://doi.org/10.1371/journal.pone.0040795
  9. Beck, R., Verrax, J., Gonze, T., Zappone, M., Pedrosa, R. C., Taper, H., Feron, O. and Calderon, P. B. (2009) Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death. Biochem. Pharmacol. 77, 375-383. https://doi.org/10.1016/j.bcp.2008.10.019
  10. Bendell, J. C., Bauer, T. M., Lamar, R., Joseph, M., Penley, W., Thompson, D. S., Spigel, D. R., Owera, R., Lane, C. M., Earwood, C. and Burris, H. A., 3rd (2016) A phase 2 study of the Hsp90 inhibitor AUY922 as treatment for patients with refractory gastrointestinal stromal tumors. Cancer Invest. 34, 265-270. https://doi.org/10.1080/07357907.2016.1193746
  11. Bendell, J. C., Jones, S. F., Hart, L., Pant, S., Moyhuddin, A., Lane, C. M., Earwood, C., Murphy, P., Patton, J., Penley, W. C., Thompson, D. and Infante, J. R. (2015) A phase I study of the Hsp90 inhibitor AUY922 plus capecitabine for the treatment of patients with advanced solid tumors. Cancer Invest. 33, 477-482. https://doi.org/10.3109/07357907.2015.1069834
  12. Boltze, C., Lehnert, H., Schneider-Stock, R., Peters, B., Hoang Vu, C. and Roessner, A. (2004) Withdrawal. HSP90 is a key for telomerase activation and malignant transition in pheochromocytoma. Endocrine 23, 229. https://doi.org/10.1007/s12020-004-0002-4
  13. Butler, L. M., Zhou, X., Xu, W. S., Scher, H. I., Rifkind, R. A., Marks, P. A. and Richon, V. M. (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc. Natl. Acad. Sci. U.S.A. 99, 11700-11705. https://doi.org/10.1073/pnas.182372299
  14. Canella, A., Welker, A. M., Yoo, J. Y., Xu, J., Abas, F. S., Kesanakurti, D., Nagarajan, P., Beattie, C. E., Sulman, E. P., Liu, J., Gumin, J., Lang, F. F., Gurcan, M. N., Kaur, B., Sampath, D. and Puduvalli, V. K. (2017) Efficacy of onalespib, a long-acting second-generation HSP90 inhibitor, as a single agent and in combination with temozolomide against malignant gliomas. Clin. Cancer Res. 23, 6215-6226. https://doi.org/10.1158/1078-0432.CCR-16-3151
  15. Castro, J. P., Fernando, R., Reeg, S., Meinl, W., Almeida, H. and Grune, T. (2019) Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation: A novel gain-of-function mechanism. Redox Biol. 21, 101108. https://doi.org/10.1016/j.redox.2019.101108
  16. Cavenagh, J., Oakervee, H., Baetiong-Caguioa, P., Davies, F., Gharibo, M., Rabin, N., Kurman, M., Novak, B., Shiraishi, N., Nakashima, D., Akinaga, S. and Yong, K. (2017) A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br. J. Cancer 117, 1295-1302. https://doi.org/10.1038/bjc.2017.302
  17. Cercek, A., Shia, J., Gollub, M., Chou, J. F., Capanu, M., Raasch, P., Reidy-Lagunes, D., Proia, D. A., Vakiani, E., Solit, D. B. and Saltz, L. B. (2014) Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clin. Colorectal Cancer 13, 207-212. https://doi.org/10.1016/j.clcc.2014.09.001
  18. Chandarlapaty, S., Sawai, A., Ye, Q., Scott, A., Silinski, M., Huang, K., Fadden, P., Partdrige, J., Hall, S., Steed, P., Norton, L., Rosen, N. and Solit, D. B. (2008) SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin. Cancer Res. 14, 240-248. https://doi.org/10.1158/1078-0432.CCR-07-1667
  19. Chen, H., Xia, Y., Fang, D., Hawke, D. and Lu, Z. (2009) Caspase-10-mediated heat shock protein 90 beta cleavage promotes UVB irradiation-induced cell apoptosis. Mol. Cell. Biol. 29, 3657-3664. https://doi.org/10.1128/MCB.01640-08
  20. Chen, L., Meng, S., Wang, H., Bali, P., Bai, W., Li, B., Atadja, P., Bhalla, K. N. and Wu, J. (2005) Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol. Cancer Ther. 4, 1311-1319. https://doi.org/10.1158/1535-7163.MCT-04-0287
  21. Cheng, W., Ainiwaer, A., Xiao, L., Cao, Q., Wu, G., Yang, Y., Mao, R. and Bao, Y. (2015) Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: potential for therapy. Mol. Med. Rep. 12, 2451-2456. https://doi.org/10.3892/mmr.2015.3725
  22. de Bono, J. S., Kristeleit, R., Tolcher, A., Fong, P., Pacey, S., Karavasilis, V., Mita, M., Shaw, H., Workman, P., Kaye, S., Rowinsky, E. K., Aherne, W., Atadja, P., Scott, J. W. and Patnaik, A. (2008) Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin. Cancer Res. 14, 6663-6673. https://doi.org/10.1158/1078-0432.CCR-08-0376
  23. Dickson, M. A., Okuno, S. H., Keohan, M. L., Maki, R. G., D'Adamo, D. R., Akhurst, T. J., Antonescu, C. R. and Schwartz, G. K. (2013) Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann. Oncol. 24, 252-257. https://doi.org/10.1093/annonc/mds275
  24. Do, K., Speranza, G., Chang, L. C., Polley, E. C., Bishop, R., Zhu, W., Trepel, J. B., Lee, S., Lee, M. J., Kinders, R. J., Phillips, L., Collins, J., Lyons, J., Jeong, W., Antony, R., Chen, A. P., Neckers, L., Doroshow, J. H. and Kummar, S. (2015) Phase I study of the heat shock protein 90 (Hsp90) inhibitor onalespib (AT13387) administered on a daily for 2 consecutive days per week dosing schedule in patients with advanced solid tumors. Invest. New Drugs 33, 921-930. https://doi.org/10.1007/s10637-015-0255-1
  25. Doi, T., Onozawa, Y., Fuse, N., Yoshino, T., Yamazaki, K., Watanabe, J., Akimov, M., Robson, M., Boku, N. and Ohtsu, A. (2014) Phase I dose-escalation study of the HSP90 inhibitor AUY922 in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol. 74, 629-636. https://doi.org/10.1007/s00280-014-2521-x
  26. Eccles, S. A., Massey, A., Raynaud, F. I., Sharp, S. Y., Box, G., Valenti, M., Patterson, L., de Haven Brandon, A., Gowan, S., Boxall, F., Aherne, W., Rowlands, M., Hayes, A., Martins, V., Urban, F., Boxall, K., Prodromou, C., Pearl, L., James, K., Matthews, T. P., Cheung, K. M., Kalusa, A., Jones, K., McDonald, E., Barril, X., Brough, P. A., Cansfield, J. E., Dymock, B., Drysdale, M. J., Finch, H., Howes, R., Hubbard, R. E., Surgenor, A., Webb, P., Wood, M., Wright, L. and Workman, P. (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 68, 2850-2860. https://doi.org/10.1158/0008-5472.CAN-07-5256
  27. Ferrarini, M., Heltai, S., Zocchi, M. R. and Rugarli, C. (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int. J. Cancer 51, 613-619. https://doi.org/10.1002/ijc.2910510418
  28. Fritsch, J., Fickers, R., Klawitter, J., Sarchen, V., Zingler, P., Adam, D., Janssen, O., Krause, E. and Schutze, S. (2016) TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death. Oncotarget 7, 75774-75789. https://doi.org/10.18632/oncotarget.12411
  29. Gao, F. C., Guo, R., Tian, W. L., Ge, F. F., Sun, L. and Jiang, Z. X. (2017) Proliferation and apoptosis of leukemia cell line K562 treated with HSP90 inhibitor 17-DMAG. Zhongguo Shi Yan Xue Ye Xue Za Zhi 25, 998-1002.
  30. Ge, F. F., Guo, R., Tian, W. L., Gao, F. C., Sun, L. and Jiang, Z. X. (2017) Effect of heat shock protein 90 inhibitor 17-DMAG on proliferation and apoptosis of acute lymphocytic leukemia cell line Jurkat. Zhongguo Shi Yan Xue Ye Xue Za Zhi 25, 1011-1015.
  31. Gialeli, C., Theocharis, A. D. and Karamanos, N. K. (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
  32. Goldman, J. W., Raju, R. N., Gordon, G. A., El-Hariry, I., Teofilivici, F., Vukovic, V. M., Bradley, R., Karol, M. D., Chen, Y., Guo, W., Inoue, T. and Rosen, L. S. (2013) A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer 13, 152-2407-13-152.
  33. Goyal, L., Wadlow, R. C., Blaszkowsky, L. S., Wolpin, B. M., Abrams, T. A., McCleary, N. J., Sheehan, S., Sundaram, E., Karol, M. D., Chen, J. and Zhu, A. X. (2015) A phase I and pharmacokinetic study of ganetespib (STA-9090) in advanced hepatocellular carcinoma. Invest. New Drugs 33, 128-137. https://doi.org/10.1007/s10637-014-0164-8
  34. Grafone, T., Palmisano, M., Nicci, C. and Storti, S. (2012) An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol. Rev. 6, e8. https://doi.org/10.4081/oncol.2012.e8
  35. Graham, B., Curry, J., Smyth, T., Fazal, L., Feltell, R., Harada, I., Coyle, J., Williams, B., Reule, M., Angove, H., Cross, D. M., Lyons, J., Wallis, N. G. and Thompson, N. T. (2012) The heat shock protein 90 inhibitor, AT13387, displays a long duration of action in vitro and in vivo in non-small cell lung cancer. Cancer Sci. 103, 522-527. https://doi.org/10.1111/j.1349-7006.2011.02191.x
  36. Grenert, J. P., Sullivan, W. P., Fadden, P., Haystead, T. A., Clark, J., Mimnaugh, E., Krutzsch, H., Ochel, H. J., Schulte, T. W., Sausville, E., Neckers, L. M. and Toft, D. O. (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J. Biol. Chem. 272, 23843-23850. https://doi.org/10.1074/jbc.272.38.23843
  37. Guertin, D. A. and Sabatini, D. M. (2007) Defining the role of mTOR in cancer. Cancer Cell 12, 9-22. https://doi.org/10.1016/j.ccr.2007.05.008
  38. He, W., Ye, X., Huang, X., Lel, W., You, L., Wang, L., Chen, X. and Qian, W. (2016) Hsp90 inhibitor, BIIB021, induces apoptosis and autophagy by regulating mTOR-Ulk1 pathway in imatinib-sensitive and -resistant chronic myeloid leukemia cells. Int. J. Oncol. 48, 1710-1720. https://doi.org/10.3892/ijo.2016.3382
  39. Hertlein, E., Wagner, A. J., Jones, J., Lin, T. S., Maddocks, K. J., Towns, W. H., 3rd, Goettl, V. M., Zhang, X., Jarjoura, D., Raymond, C. A., West, D. A., Croce, C. M., Byrd, J. C. and Johnson, A. J. (2010) 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 116, 45-53.
  40. Hong, D., Said, R., Falchook, G., Naing, A., Moulder, S., Tsimberidou, A. M., Galluppi, G., Dakappagari, N., Storgard, C., Kurzrock, R. and Rosen, L. S. (2013) Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin. Cancer Res. 19, 4824-4831. https://doi.org/10.1158/1078-0432.CCR-13-0477
  41. Hostein, I., Robertson, D., DiStefano, F., Workman, P. and Clarke, P. A. (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res. 61, 4003-4009.
  42. Infante, J. R., Weiss, G. J., Jones, S., Tibes, R., Bauer, T. M., Bendell, J. C., Hinson, J. M.,Jr, Von Hoff, D. D., Burris, H. A.,3rd, Orlemans, E. O. and Ramanathan, R. K. (2014) Phase I dose-escalation studies of SNX-5422, an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumours. Eur. J. Cancer 50, 2897-2904. https://doi.org/10.1016/j.ejca.2014.07.017
  43. Irby, R. B. and Yeatman, T. J. (2000) Role of Src expression and activation in human cancer. Oncogene 19, 5636-5642. https://doi.org/10.1038/sj.onc.1203912
  44. Isambert, N., Delord, J. P., Soria, J. C., Hollebecque, A., Gomez-Roca, C., Purcea, D., Rouits, E., Belli, R. and Fumoleau, P. (2015) Debio0932, a second-generation oral heat shock protein (HSP) inhibitor, in patients with advanced cancer-results of a first-in-man dose-escalation study with a fixed-dose extension phase. Ann. Oncol. 26, 1005-1011. https://doi.org/10.1093/annonc/mdv031
  45. Jensen, M. R., Schoepfer, J., Radimerski, T., Massey, A., Guy, C. T., Brueggen, J., Quadt, C., Buckler, A., Cozens, R., Drysdale, M. J., Garcia-Echeverria, C. and Chene, P. (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res. 10, R33. https://doi.org/10.1186/bcr1996
  46. Jez, J. M., Chen, J. C., Rastelli, G., Stroud, R. M. and Santi, D. V. (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem. Biol. 10, 361-368. https://doi.org/10.1016/S1074-5521(03)00075-9
  47. Jhaveri, K., Chandarlapaty, S., Lake, D., Gilewski, T., Robson, M., Goldfarb, S., Drullinsky, P., Sugarman, S., Wasserheit-Leiblich, C., Fasano, J., Moynahan, M. E., D'Andrea, G., Lim, K., Reddington, L., Haque, S., Patil, S., Bauman, L., Vukovic, V., El-Hariry, I., Hudis, C. and Modi, S. (2014) A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin. Breast Cancer 14, 154-160. https://doi.org/10.1016/j.clbc.2013.12.012
  48. Jhaveri, K., Miller, K., Rosen, L., Schneider, B., Chap, L., Hannah, A., Zhong, Z., Ma, W., Hudis, C. and Modi, S. (2012) A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin. Cancer Res. 18, 5090-5098. https://doi.org/10.1158/1078-0432.CCR-11-3200
  49. Jhaveri, K., Wang, R., Teplinsky, E., Chandarlapaty, S., Solit, D., Cadoo, K., Speyer, J., D'Andrea, G., Adams, S., Patil, S., Haque, S., O'Neill, T., Friedman, K., Esteva, F. J., Hudis, C. and Modi, S. (2017) A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res. 19, 89-017-0879-5.
  50. Johnson, M. L., Yu, H. A., Hart, E. M., Weitner, B. B., Rademaker, A. W., Patel, J. D., Kris, M. G. and Riely, G. J. (2015) Phase I/II study of HSP90 inhibitor AUY922 and erlotinib for EGFR-mutant lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. J. Clin. Oncol. 33, 1666-1673. https://doi.org/10.1200/JCO.2014.59.7328
  51. Junn, E., Han, S. H., Im, J. Y., Yang, Y., Cho, E. W., Um, H. D., Kim, D. K., Lee, K. W., Han, P. L., Rhee, S. G. and Choi, I. (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 164, 6287-6295. https://doi.org/10.4049/jimmunol.164.12.6287
  52. Kaimul, A. M., Nakamura, H., Masutani, H. and Yodoi, J. (2007) Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic. Biol. Med. 43, 861-868. https://doi.org/10.1016/j.freeradbiomed.2007.05.032
  53. Karkoulis, P. K., Stravopodis, D. J., Margaritis, L. H. and Voutsinas, G. E. (2010) 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells. BMC Cancer 10, 481-2407-10-481.
  54. Kim, B. M. and Chung, H. W. (2007) Hypoxia/reoxygenation induces apoptosis through a ROS-mediated caspase-8/Bid/Bax pathway in human lymphocytes. Biochem. Biophys. Res. Commun. 363, 745-750. https://doi.org/10.1016/j.bbrc.2007.09.024
  55. Kliche, S. and Waltenberger, J. (2001) VEGF receptor signaling and endothelial function. IUBMB Life 52, 61-66. https://doi.org/10.1080/15216540252774784
  56. Kobayashi, N., Toyooka, S., Soh, J., Yamamoto, H., Dote, H., Kawasaki, K., Otani, H., Kubo, T., Jida, M., Ueno, T., Ando, M., Ogino, A., Kiura, K. and Miyoshi, S. (2012) The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor. Lung Cancer 75, 161-166. https://doi.org/10.1016/j.lungcan.2011.04.022
  57. Kong, A., Rea, D., Ahmed, S., Beck, J. T., Lopez Lopez, R., Biganzoli, L., Armstrong, A. C., Aglietta, M., Alba, E., Campone, M., Hsu Schmitz, S. F., Lefebvre, C., Akimov, M. and Lee, S. C. (2016) Phase 1B/2 study of the HSP90 inhibitor AUY922 plus trastuzumab in metastatic HER2-positive breast cancer patients who have progressed on trastuzumab-based regimen. Oncotarget 7, 37680-37692. https://doi.org/10.18632/oncotarget.8974
  58. Koul, H. K., Pal, M. and Koul, S. (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4, 342-359. https://doi.org/10.1177/1947601913507951
  59. Krishnamoorthy, G. P., Guida, T., Alfano, L., Avilla, E., Santoro, M., Carlomagno, F. and Melillo, R. M. (2013) Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation. J. Biol. Chem. 288, 17481-17494. https://doi.org/10.1074/jbc.M112.439422
  60. Kummar, S., Gutierrez, M. E., Gardner, E. R., Chen, X., Figg, W. D., Zajac-Kaye, M., Chen, M., Steinberg, S. M., Muir, C. A., Yancey, M. A., Horneffer, Y. R., Juwara, L., Melillo, G., Ivy, S. P., Merino, M., Neckers, L., Steeg, P. S., Conley, B. A., Giaccone, G., Doroshow, J. H. and Murgo, A. J. (2010) Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur. J. Cancer 46, 340-347. https://doi.org/10.1016/j.ejca.2009.10.026
  61. Lancet, J. E., Gojo, I., Burton, M., Quinn, M., Tighe, S. M., Kersey, K., Zhong, Z., Albitar, M. X., Bhalla, K., Hannah, A. L. and Baer, M. R. (2010) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24, 699-705. https://doi.org/10.1038/leu.2009.292
  62. Lazenby, M., Hills, R., Burnett, A. K. and Zabkiewicz, J. (2015) The HSP90 inhibitor ganetespib: A potential effective agent for Acute Myeloid Leukemia in combination with cytarabine. Leuk. Res. 39, 617-624. https://doi.org/10.1016/j.leukres.2015.03.016
  63. Lee, H., Saini, N., Howard, E. W., Parris, A. B., Ma, Z., Zhao, Q., Zhao, M., Liu, B., Edgerton, S. M., Thor, A. D. and Yang, X. (2018) Ganetespib targets multiple levels of the receptor tyrosine kinase signaling cascade and preferentially inhibits ErbB2-overexpressing breast cancer cells. Sci. Rep. 8, 6829. https://doi.org/10.1038/s41598-018-25284-0
  64. Lee, H., Saini, N., Parris, A. B., Zhao, M. and Yang, X. (2017) Ganetespib induces G2/M cell cycle arrest and apoptosis in gastric cancer cells through targeting of receptor tyrosine kinase signaling. Int. J. Oncol. 51, 967-974.
  65. Leicht, D. T., Balan, V., Kaplun, A., Singh-Gupta, V., Kaplun, L., Dobson, M. and Tzivion, G. (2007) Raf kinases: function, regulation and role in human cancer. Biochim. Biophys. Acta 1773, 1196-1212. https://doi.org/10.1016/j.bbamcr.2007.05.001
  66. Leng, A. M., Liu, T., Yang, J., Cui, J. F., Li, X. H., Zhu, Y. N., Xiong, T., Zhang, G. and Chen, Y. (2012) The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biol. Int. 36, 893-899. https://doi.org/10.1042/CBI20110473
  67. Leow, C. C., Chesebrough, J., Coffman, K. T., Fazenbaker, C. A., Gooya, J., Weng, D., Coats, S., Jackson, D., Jallal, B. and Chang, Y. (2009) Antitumor efficacy of IPI-504, a selective heat shock protein 90 inhibitor against human epidermal growth factor receptor 2-positive human xenograft models as a single agent and in combination with trastuzumab or lapatinib. Mol. Cancer Ther. 8, 2131-2141. https://doi.org/10.1158/1535-7163.MCT-08-1038
  68. Liang, F. P., Lin, C. H., Kuo, C. D., Chao, H. P. and Fu, S. L. (2008) Suppression of v-Src transformation by andrographolide via degradation of the v-Src protein and attenuation of the Erk signaling pathway. J. Biol. Chem. 283, 5023-5033. https://doi.org/10.1074/jbc.M705877200
  69. Liu, S. H., Lin, C. H., Liang, F. P., Chen, P. F., Kuo, C. D., Alam, M. M., Maiti, B., Hung, S. K., Chi, C. W., Sun, C. M. and Fu, S. L. (2014) Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy. Biochem. Pharmacol. 87, 229-242. https://doi.org/10.1016/j.bcp.2013.10.014
  70. Lundgren, K., Zhang, H., Brekken, J., Huser, N., Powell, R. E., Timple, N., Busch, D. J., Neely, L., Sensintaffar, J. L., Yang, Y. C., McKenzie, A., Friedman, J., Scannevin, R., Kamal, A., Hong, K., Kasibhatla, S. R., Boehm, M. F. and Burrows, F. J. (2009) BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol. Cancer Ther. 8, 921-929. https://doi.org/10.1158/1535-7163.MCT-08-0758
  71. Maddocks, K., Hertlein, E., Chen, T. L., Wagner, A. J., Ling, Y., Flynn, J., Phelps, M., Johnson, A. J., Byrd, J. C. and Jones, J. A. (2016) A phase I trial of the intravenous Hsp90 inhibitor alvespimycin (17-DMAG) in patients with relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk. Lymphoma 57, 2212-2215. https://doi.org/10.3109/10428194.2015.1129536
  72. Menezes, D. L., Taverna, P., Jensen, M. R., Abrams, T., Stuart, D., Yu, G. K., Duhl, D., Machajewski, T., Sellers, W. R., Pryer, N. K. and Gao, Z. (2012) The novel oral Hsp90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo. Mol. Cancer Ther. 11, 730-739. https://doi.org/10.1158/1535-7163.MCT-11-0667
  73. Mita, A. C., Mita, M. M., Nawrocki, S. T. and Giles, F. J. (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res. 14, 5000-5005. https://doi.org/10.1158/1078-0432.CCR-08-0746
  74. Miyata, Y., Nakamoto, H. and Neckers, L. (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19, 347-365. https://doi.org/10.2174/138161213804143725
  75. Moasser, M. M. (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26, 6469-6487. https://doi.org/10.1038/sj.onc.1210477
  76. Modi, S., Stopeck, A., Linden, H., Solit, D., Chandarlapaty, S., Rosen, N., D'Andrea, G., Dickler, M., Moynahan, M. E., Sugarman, S., Ma, W., Patil, S., Norton, L., Hannah, A. L. and Hudis, C. (2011) HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin. Cancer Res. 17, 5132-5139. https://doi.org/10.1158/1078-0432.CCR-11-0072
  77. Modi, S., Stopeck, A. T., Gordon, M. S., Mendelson, D., Solit, D. B., Bagatell, R., Ma, W., Wheler, J., Rosen, N., Norton, L., Cropp, G. F., Johnson, R. G., Hannah, A. L. and Hudis, C. A. (2007) Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J. Clin. Oncol. 25, 5410-5417. https://doi.org/10.1200/JCO.2007.11.7960
  78. Molife, L. R., Attard, G., Fong, P. C., Karavasilis, V., Reid, A. H., Patterson, S., Riggs, C. E., Jr, Higano, C., Stadler, W. M., McCulloch, W., Dearnaley, D., Parker, C. and de Bono, J. S. (2010) Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann. Oncol. 21, 109-113. https://doi.org/10.1093/annonc/mdp270
  79. Moser, C., Lang, S. A., Hackl, C., Wagner, C., Scheiffert, E., Schlitt, H. J., Geissler, E. K. and Stoeltzing, O. (2012) Targeting HSP90 by the novel inhibitor NVP-AUY922 reduces growth and angiogenesis of pancreatic cancer. Anticancer Res. 32, 2551-2561.
  80. Nakashima, T., Ishii, T., Tagaya, H., Seike, T., Nakagawa, H., Kanda, Y., Akinaga, S., Soga, S. and Shiotsu, Y. (2010) New molecular and biological mechanism of antitumor activities of KW-2478, a novel nonansamycin heat shock protein 90 inhibitor, in multiple myeloma cells. Clin. Cancer Res. 16, 2792-2802. https://doi.org/10.1158/1078-0432.CCR-09-3112
  81. Nath, S. and Mukherjee, P. (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med. 20, 332-342. https://doi.org/10.1016/j.molmed.2014.02.007
  82. Neckers, L., Mimnaugh, E. and Schulte, T. W. (1999) Hsp90 as an anticancer target. Drug Resist Updat. 2, 165-172. https://doi.org/10.1054/drup.1999.0082
  83. Neckers, L. and Workman, P. (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64-76. https://doi.org/10.1158/1078-0432.CCR-11-1000
  84. Nishioka, C., Ikezoe, T., Yang, J., Takeuchi, S., Koeffler, H. P. and Yokoyama, A. (2008) MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Leuk. Res. 32, 1382-1392. https://doi.org/10.1016/j.leukres.2008.02.018
  85. Niu, G., Li, Z., Cao, Q. and Chen, X. (2009) Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur. J. Nucl. Med. Mol. Imaging 36, 1510-1519. https://doi.org/10.1007/s00259-009-1158-1
  86. Oh, W. K., Galsky, M. D., Stadler, W. M., Srinivas, S., Chu, F., Bubley, G., Goddard, J., Dunbar, J. and Ross, R. W. (2011) Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology 78, 626-630. https://doi.org/10.1016/j.urology.2011.04.041
  87. Okawa, Y., Hideshima, T., Steed, P., Vallet, S., Hall, S., Huang, K., Rice, J., Barabasz, A., Foley, B., Ikeda, H., Raje, N., Kiziltepe, T., Yasui, H., Enatsu, S. and Anderson, K. C. (2009) SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood 113, 846-855. https://doi.org/10.1182/blood-2008-04-151928
  88. Ozaki, T. and Nakagawara, A. (2011) Role of p53 in cell death and human cancers. Cancers (Basel) 3, 994-1013. https://doi.org/10.3390/cancers3010994
  89. Pacey, S., Gore, M., Chao, D., Banerji, U., Larkin, J., Sarker, S., Owen, K., Asad, Y., Raynaud, F., Walton, M., Judson, I., Workman, P. and Eisen, T. (2012) A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Invest. New Drugs 30, 341-349. https://doi.org/10.1007/s10637-010-9493-4
  90. Pacey, S., Wilson, R. H., Walton, M., Eatock, M. M., Hardcastle, A., Zetterlund, A., Arkenau, H. T., Moreno-Farre, J., Banerji, U., Roels, B., Peachey, H., Aherne, W., de Bono, J. S., Raynaud, F., Workman, P. and Judson, I. (2011) A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin. Cancer Res. 17, 1561-1570. https://doi.org/10.1158/1078-0432.CCR-10-1927
  91. Park, S., Park, J. A., Kim, Y. E., Song, S., Kwon, H. J. and Lee, Y. (2015) Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones 20, 149-157. https://doi.org/10.1007/s12192-014-0533-4
  92. Park, S., Park, J. A., Yoo, H., Park, H. B. and Lee, Y. (2017) Proteasome inhibitor-induced cleavage of HSP90 is mediated by ROS generation and caspase 10-activation in human leukemic cells. Redox Biol. 13, 470-476. https://doi.org/10.1016/j.redox.2017.07.010
  93. Park, S. E., Kim, D. E., Kim, M. J., Lee, J. S., Rho, J. K., Jeong, S. Y., Choi, E. K., Kim, C. S. and Hwang, J. J. (2019) Vorinostat enhances gefitinibinduced cell death through reactive oxygen speciesdependent cleavage of HSP90 and its clients in nonsmall cell lung cancer with the EGFR mutation. Oncol. Rep. 41, 525-533.
  94. Prodromou, C., Panaretou, B., Chohan, S., Siligardi, G., O'Brien, R., Ladbury, J. E., Roe, S. M., Piper, P. W. and Pearl, L. H. (2000) The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J. 19, 4383-4392. https://doi.org/10.1093/emboj/19.16.4383
  95. Prodromou, C., Roe, S. M., O'Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65-75. https://doi.org/10.1016/S0092-8674(00)80314-1
  96. Proia, D. A., Foley, K. P., Korbut, T., Sang, J., Smith, D., Bates, R. C., Liu, Y., Rosenberg, A. F., Zhou, D., Koya, K., Barsoum, J. and Blackman, R. K. (2011) Multifaceted intervention by the Hsp90 inhibitor ganetespib (STA-9090) in cancer cells with activated JAK/STAT signaling. PLoS ONE 6, e18552. https://doi.org/10.1371/journal.pone.0018552
  97. Puisieux, A., Valsesia-Wittmann, S. and Ansieau, S. (2006) A twist for survival and cancer progression. Br. J. Cancer 94, 13-17. https://doi.org/10.1038/sj.bjc.6602876
  98. Qie, S. and Diehl, J. A. (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 94, 1313-1326. https://doi.org/10.1007/s00109-016-1475-3
  99. Quintas-Cardama, A. and Cortes, J. (2009) Molecular biology of bcrabl1-positive chronic myeloid leukemia. Blood 113, 1619-1630. https://doi.org/10.1182/blood-2008-03-144790
  100. Rajan, A., Kelly, R. J., Trepel, J. B., Kim, Y. S., Alarcon, S. V., Kummar, S., Gutierrez, M., Crandon, S., Zein, W. M., Jain, L., Mannargudi, B., Figg, W. D., Houk, B. E., Shnaidman, M., Brega, N. and Giaccone, G. (2011) A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin. Cancer Res. 17, 6831-6839. https://doi.org/10.1158/1078-0432.CCR-11-0821
  101. Ramalingam, S., Goss, G., Rosell, R., Schmid-Bindert, G., Zaric, B., Andric, Z., Bondarenko, I., Komov, D., Ceric, T., Khuri, F., Samarzija, M., Felip, E., Ciuleanu, T., Hirsh, V., Wehler, T., Spicer, J., Salgia, R., Shapiro, G., Sheldon, E., Teofilovici, F., Vukovic, V. and Fennell, D. (2015) A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1). Ann. Oncol. 26, 1741-1748. https://doi.org/10.1093/annonc/mdv220
  102. Ramanathan, R. K., Trump, D. L., Eiseman, J. L., Belani, C. P., Agarwala, S. S., Zuhowski, E. G., Lan, J., Potter, D. M., Ivy, S. P., Ramalingam, S., Brufsky, A. M., Wong, M. K., Tutchko, S. and Egorin, M. J. (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer Res. 11, 3385-3391. https://doi.org/10.1158/1078-0432.CCR-04-2322
  103. Ramaswamy, B., Fiskus, W., Cohen, B., Pellegrino, C., Hershman, D. L., Chuang, E., Luu, T., Somlo, G., Goetz, M., Swaby, R., Shapiro, C. L., Stearns, V., Christos, P., Espinoza-Delgado, I., Bhalla, K. and Sparano, J. A. (2012) Phase I-II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo. Breast Cancer Res. Treat. 132, 1063-1072. https://doi.org/10.1007/s10549-011-1928-x
  104. Renouf, D. J., Hedley, D., Krzyzanowska, M. K., Schmuck, M., Wang, L. and Moore, M. J. (2016) A phase II study of the HSP90 inhibitor AUY922 in chemotherapy refractory advanced pancreatic cancer. Cancer Chemother. Pharmacol. 78, 541-545. https://doi.org/10.1007/s00280-016-3102-y
  105. Richardson, P. G., Chanan-Khan, A. A., Alsina, M., Albitar, M., Berman, D., Messina, M., Mitsiades, C. S. and Anderson, K. C. (2010) Tanespimycin monotherapy in relapsed multiple myeloma: results of a phase 1 dose-escalation study. Br. J. Haematol. 150, 438-445. https://doi.org/10.1111/j.1365-2141.2010.08265.x
  106. Richardson, P. G., Chanan-Khan, A. A., Lonial, S., Krishnan, A. Y., Carroll, M. P., Alsina, M., Albitar, M., Berman, D., Messina, M. and Anderson, K. C. (2011) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br. J. Haematol. 153, 729-740. https://doi.org/10.1111/j.1365-2141.2011.08664.x
  107. Richter, K. and Buchner, J. (2001) Hsp90: chaperoning signal transduction. J. Cell. Physiol. 188, 281-290. https://doi.org/10.1002/jcp.1131
  108. Ritossa, F. (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 18, 571-573. https://doi.org/10.1007/BF02172188
  109. Rohl, A., Rohrberg, J. and Buchner, J. (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38, 253-262. https://doi.org/10.1016/j.tibs.2013.02.003
  110. Ruefli, A. A., Ausserlechner, M. J., Bernhard, D., Sutton, V. R., Tainton, K. M., Kofler, R., Smyth, M. J. and Johnstone, R. W. (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 98, 10833-10838. https://doi.org/10.1073/pnas.191208598
  111. Saif, M. W., Takimoto, C., Mita, M., Banerji, U., Lamanna, N., Castro, J., O'Brien, S., Stogard, C. and Von Hoff, D. (2014) A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin. Cancer Res. 20, 445-455. https://doi.org/10.1158/1078-0432.CCR-13-1257
  112. Satelli, A. and Li, S. (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol. Life Sci. 68, 3033-3046. https://doi.org/10.1007/s00018-011-0735-1
  113. Sauvageot, C. M., Weatherbee, J. L., Kesari, S., Winters, S. E., Barnes, J., Dellagatta, J., Ramakrishna, N. R., Stiles, C. D., Kung, A. L., Kieran, M. W. and Wen, P. Y. (2009) Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro-oncology 11, 109-121. https://doi.org/10.1215/15228517-2008-060
  114. Scroggins, B. T., Robzyk, K., Wang, D., Marcu, M. G., Tsutsumi, S., Beebe, K., Cotter, R. J., Felts, S., Toft, D., Karnitz, L., Rosen, N. and Neckers, L. (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell 25, 151-159. https://doi.org/10.1016/j.molcel.2006.12.008
  115. Seggewiss-Bernhardt, R., Bargou, R. C., Goh, Y. T., Stewart, A. K., Spencer, A., Alegre, A., Blade, J., Ottmann, O. G., Fernandez-Ibarra, C., Lu, H., Pain, S., Akimov, M. and Iyer, S. P. (2015) Phase 1/1B trial of the heat shock protein 90 inhibitor NVP-AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer 121, 2185-2192. https://doi.org/10.1002/cncr.29339
  116. Sessa, C., Shapiro, G. I., Bhalla, K. N., Britten, C., Jacks, K. S., Mita, M., Papadimitrakopoulou, V., Pluard, T., Samuel, T. A., Akimov, M., Quadt, C., Fernandez-Ibarra, C., Lu, H., Bailey, S., Chica, S. and Banerji, U. (2013) First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin. Cancer Res. 19, 3671-3680. https://doi.org/10.1158/1078-0432.CCR-12-3404
  117. Shapiro, G. I., Kwak, E., Dezube, B. J., Yule, M., Ayrton, J., Lyons, J. and Mahadevan, D. (2015) First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin. Cancer Res. 21, 87-97. https://doi.org/10.1158/1078-0432.CCR-14-0979
  118. Sharp, S. and Workman, P. (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res. 95, 323-348. https://doi.org/10.1016/S0065-230X(06)95009-X
  119. Shen, S. C., Yang, L. Y., Lin, H. Y., Wu, C. Y., Su, T. H. and Chen, Y. C. (2008) Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As(+3)- and MMA(+3)-induced apoptosis through inhibition of telomerase activity via JNK activation. Toxicol. Appl. Pharmacol. 229, 239-251. https://doi.org/10.1016/j.taap.2008.01.018
  120. Shimamura, T., Perera, S. A., Foley, K. P., Sang, J., Rodig, S. J., Inoue, T., Chen, L., Li, D., Carretero, J., Li, Y. C., Sinha, P., Carey, C. D., Borgman, C. L., Jimenez, J. P., Meyerson, M., Ying, W., Barsoum, J., Wong, K. K. and Shapiro, G. I. (2012) Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin. Cancer Res. 18, 4973-4985. https://doi.org/10.1158/1078-0432.CCR-11-2967
  121. Socinski, M. A., Goldman, J., El-Hariry, I., Koczywas, M., Vukovic, V., Horn, L., Paschold, E., Salgia, R., West, H., Sequist, L. V., Bonomi, P., Brahmer, J., Chen, L. C., Sandler, A., Belani, C. P., Webb, T., Harper, H., Huberman, M., Ramalingam, S., Wong, K. K., Teofilovici, F., Guo, W. and Shapiro, G. I. (2013) A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin. Cancer Res. 19, 3068-3077. https://doi.org/10.1158/1078-0432.CCR-12-3381
  122. Solit, D. B., Osman, I., Polsky, D., Panageas, K. S., Daud, A., Goydos, J. S., Teitcher, J., Wolchok, J. D., Germino, F. J., Krown, S. E., Coit, D., Rosen, N. and Chapman, P. B. (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res. 14, 8302-8307. https://doi.org/10.1158/1078-0432.CCR-08-1002
  123. Solit, D. B., Zheng, F. F., Drobnjak, M., Munster, P. N., Higgins, B., Verbel, D., Heller, G., Tong, W., Cordon-Cardo, C., Agus, D. B., Scher, H. I. and Rosen, N. (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. 8, 986-993.
  124. Spreafico, A., Delord, J. P., De Mattos-Arruda, L., Berge, Y., Rodon, J., Cottura, E., Bedard, P. L., Akimov, M., Lu, H., Pain, S., Kaag, A., Siu, L. L. and Cortes, J. (2015) A first-in-human phase I, dose-escalation, multicentre study of HSP990 administered orally in adult patients with advanced solid malignancies. Br. J. Cancer 112, 650-659. https://doi.org/10.1038/bjc.2014.653
  125. Sreedhar, A. S., Kalmar, E., Csermely, P. and Shen, Y. F. (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562, 11-15. https://doi.org/10.1016/S0014-5793(04)00229-7
  126. Sullivan, W. P., Owen, B. A. and Toft, D. O. (2002) The influence of ATP and p23 on the conformation of hsp90. J. Biol. Chem. 277, 45942-45948. https://doi.org/10.1074/jbc.M207754200
  127. Sydor, J. R., Normant, E., Pien, C. S., Porter, J. R., Ge, J., Grenier, L., Pak, R. H., Ali, J. A., Dembski, M. S., Hudak, J., Patterson, J., Penders, C., Pink, M., Read, M. A., Sang, J., Woodward, C., Zhang, Y., Grayzel, D. S., Wright, J., Barrett, J. A., Palombella, V. J., Adams, J. and Tong, J. K. (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc. Natl. Acad. Sci. U.S.A. 103, 17408-17413. https://doi.org/10.1073/pnas.0608372103
  128. Thakur, M. K., Heilbrun, L. K., Sheng, S., Stein, M., Liu, G., Antonarakis, E. S., Vaishampayan, U., Dzinic, S. H., Li, X., Freeman, S., Smith, D. and Heath, E. I. (2016) A phase II trial of ganetespib, a heat shock protein 90 Hsp90) inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC)-a prostate cancer clinical trials consortium (PCCTC) study. Invest. New Drugs 34, 112-118. https://doi.org/10.1007/s10637-015-0307-6
  129. Tiburcio, P. D., Choi, H. and Huang, L. E. (2014) Complex role of HIF in cancer: the known, the unknown, and the unexpected. Hypoxia (Auckl.) 2, 59-70.
  130. Tissieres, A., Mitchell, H. K. and Tracy, U. M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389-398. https://doi.org/10.1016/0022-2836(74)90447-1
  131. Tse, A. N., Klimstra, D. S., Gonen, M., Shah, M., Sheikh, T., Sikorski, R., Carvajal, R., Mui, J., Tipian, C., O'Reilly, E., Chung, K., Maki, R., Lefkowitz, R., Brown, K., Manova-Todorova, K., Wu, N., Egorin, M. J., Kelsen, D. and Schwartz, G. K. (2008) A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin. Cancer Res. 14, 6704-6711. https://doi.org/10.1158/1078-0432.CCR-08-1006
  132. Tu, Y., Hershman, D. L., Bhalla, K., Fiskus, W., Pellegrino, C. M., Andreopoulou, E., Makower, D., Kalinsky, K., Fehn, K., Fineberg, S., Negassa, A., Montgomery, L. L., Wiechmann, L. S., Alpaugh, R. K., Huang, M. and Sparano, J. A. (2014) A phase I-II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in locally advanced breast cancer. Breast Cancer Res. Treat. 146, 145-152. https://doi.org/10.1007/s10549-014-3008-5
  133. Voldborg, B. R., Damstrup, L., Spang-Thomsen, M. and Poulsen, H. S. (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol. 8, 1197-1206. https://doi.org/10.1023/A:1008209720526
  134. Wagner, A. J., Chugh, R., Rosen, L. S., Morgan, J. A., George, S., Gordon, M., Dunbar, J., Normant, E., Grayzel, D. and Demetri, G. D. (2013) A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin. Cancer Res. 19, 6020-6029. https://doi.org/10.1158/1078-0432.CCR-13-0953
  135. Walker, A. R., Klisovic, R., Johnston, J. S., Jiang, Y., Geyer, S., Kefauver, C., Binkley, P., Byrd, J. C., Grever, M. R., Garzon, R., Phelps, M. A., Marcucci, G., Blum, K. A. and Blum, W. (2013) Pharmacokinetics and dose escalation of the heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin in combination with bortezomib in relapsed or refractory acute myeloid leukemia. Leuk. Lymphoma 54, 1996-2002. https://doi.org/10.3109/10428194.2012.760733
  136. Walsby, E. J., Lazenby, M., Pepper, C. J., Knapper, S. and Burnett, A. K. (2013) The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K and IKK signalling pathways and synergizes with cytarabine in acute myeloid leukaemia cells. Br. J. Haematol. 161, 57-67. https://doi.org/10.1111/bjh.12215
  137. Weigel, B. J., Blaney, S. M., Reid, J. M., Safgren, S. L., Bagatell, R., Kersey, J., Neglia, J. P., Ivy, S. P., Ingle, A. M., Whitesell, L., Gilbertson, R. J., Krailo, M., Ames, M. and Adamson, P. C. (2007) A phase I study of 17-allylaminogeldanamycin in relapsed/refractory pediatric patients with solid tumors: a Children's Oncology Group study. Clin. Cancer Res. 13, 1789-1793. https://doi.org/10.1158/1078-0432.CCR-06-2270
  138. Welch, W. J. (1993) How cells respond to stress. Sci. Am. 268, 56-64. https://doi.org/10.1038/scientificamerican0593-56
  139. Woodhead, A. J., Angove, H., Carr, M. G., Chessari, G., Congreve, M., Coyle, J. E., Cosme, J., Graham, B., Day, P. J., Downham, R., Fazal, L., Feltell, R., Figueroa, E., Frederickson, M., Lewis, J., McMenamin, R., Murray, C. W., O'Brien, M. A., Parra, L., Patel, S., Phillips, T., Rees, D. C., Rich, S., Smith, D. M., Trewartha, G., Vinkovic, M., Williams, B. and Woolford, A. J. (2010) Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydrois oindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J. Med. Chem. 53, 5956-5969. https://doi.org/10.1021/jm100060b
  140. Wu, Y., Wang, X., Chang, S., Lu, W., Liu, M. and Pang, X. (2016) beta-Lapachone induces NAD(P)H:quinone oxidoreductase-1- and oxidative stress-dependent heat shock protein 90 cleavage and inhibits tumor growth and angiogenesis. J. Pharmacol. Exp. Ther. 357, 466-475. https://doi.org/10.1124/jpet.116.232694
  141. Xia, Y., Shen, S. and Verma, I. M. (2014) NF-kappaB, an active player in human cancers. Cancer Immunol. Res. 2, 823-830. https://doi.org/10.1158/2326-6066.CIR-14-0112
  142. Xu, Y., Jin, J., Xu, J., Shao, Y. W. and Fan, Y. (2017) JAK2 variations and functions in lung adenocarcinoma. Tumour Biol. 39, 1010428317711140.
  143. Ying, W., Du, Z., Sun, L., Foley, K. P., Proia, D. A., Blackman, R. K., Zhou, D., Inoue, T., Tatsuta, N., Sang, J., Ye, S., Acquaviva, J., Ogawa, L. S., Wada, Y., Barsoum, J. and Koya, K. (2012) Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol. Cancer Ther. 11, 475-484. https://doi.org/10.1158/1535-7163.MCT-11-0755
  144. Yoeli-Lerner, M. and Toker, A. (2006) Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle 5, 603-605. https://doi.org/10.4161/cc.5.6.2561
  145. Yong, K., Cavet, J., Johnson, P., Morgan, G., Williams, C., Nakashima, D., Akinaga, S., Oakervee, H. and Cavenagh, J. (2016) Phase I study of KW-2478, a novel Hsp90 inhibitor, in patients with B-cell malignancies. Br. J. Cancer 114, 7-13. https://doi.org/10.1038/bjc.2015.422
  146. Yu, X., Guo, Z. S., Marcu, M. G., Neckers, L., Nguyen, D. M., Chen, G. A. and Schrump, D. S. (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst. 94, 504-513. https://doi.org/10.1093/jnci/94.7.504
  147. Zhang, H., Neely, L., Lundgren, K., Yang, Y. C., Lough, R., Timple, N. and Burrows, F. (2010a) BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int. J. Cancer 126, 1226-1234. https://doi.org/10.1002/ijc.24825
  148. Zhang, H. and Zhang, L. (2011) Ansamycin class of natural product Hsp90 inhibitors. In Encyclopedia of Cancer (M. Schwab, Ed.), pp. 198-201. Springer Berlin Heidelberg, Berlin, Heidelberg.
  149. Zhang, P., Wang, C., Gao, K., Wang, D., Mao, J., An, J., Xu, C., Wu, D., Yu, H., Liu, J. O. and Yu, L. (2010b) The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation. J. Biol. Chem. 285, 8869-8879. https://doi.org/10.1074/jbc.M109.063321
  150. Zuehlke, A. and Johnson, J. L. (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93, 211-217. https://doi.org/10.1002/bip.21292

Cited by

  1. Evaluation and Management of Cirrhotic Patients Undergoing Elective Surgery vol.21, pp.7, 2019, https://doi.org/10.1007/s11894-019-0700-y
  2. Limonoids from Guarea guidonia and Cedrela odorata: Heat Shock Protein 90 (Hsp90) Modulator Properties of Chisomicine D vol.84, pp.3, 2019, https://doi.org/10.1021/acs.jnatprod.0c01217
  3. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo vol.10, pp.5, 2019, https://doi.org/10.1038/s41389-021-00331-0