DOI QR코드

DOI QR Code

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Ki Tae (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Young Sik (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2019.08.17
  • Accepted : 2019.08.27
  • Published : 2019.08.30

Abstract

CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

Keywords

References

  1. B. H. Choi, J. H. Kim, C. S. Cha, and J. H. Kim, Int. J. Adv. Eng. Technol., 9, 321 (2016).
  2. I. Okajima, M. Hiramatsu, Y. Shimamura, T. Awaya, and T. Sako, J. Supercrit. Fluid., 91, 68 (2014). https://doi.org/10.1016/j.supflu.2014.04.011
  3. K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang, and S. J. Park, Elast. Compos., 47, 65 (2012). https://doi.org/10.7473/EC.2012.47.1.065
  4. C. S. Hong, Trans. Korean Soc. Mech. Eng., 34, 334 (1994).
  5. S. W. Hong, S. S. Ahn, J. M. Koo, and C. S. Seok, Trans. Korean Soc. Mech. Eng. A, 36, 889 (2012). https://doi.org/10.3795/KSME-A.2012.36.8.889
  6. D. W. Suh, M. K. Ku, J. D. Nam, H. S. Choi, K. M. Chung, and K. J. Ahn, Polymer, 21, 1029 (1997).
  7. D. I. Seo and J. B. Lee, Corros. Sci. Tech., 16, 128 (2017). https://doi.org/10.14773/cst.2017.16.3.128
  8. S. Li, H. A. Khan, L. H. Hihara, H. Cong, and J. Li, Corros. Sci., 132, 300 (2018). https://doi.org/10.1016/j.corsci.2018.01.005
  9. D. Snihirova, D. Hoche, S. Lamaka, Z. Mir, T. Hack, and M. L. Zheludkevich, Corros. Sci., 157, 70 (2019). https://doi.org/10.1016/j.corsci.2019.04.036
  10. Y. S. Kim, H. K. Lim, Y. I. Sohn, Y. R. Yoo, and H. Y. Chang, Corros. Sci. Tech., 9, 39 (2010). https://doi.org/10.14773/cst.2010.9.1.039
  11. Y. S. Kim, H. K. Lim, Y. I. Sohn, Y. R. Yoo, and H. Y. Chang, Korean J. Met. Mater., 48, 6, 14 (2010).
  12. Y. R. Yoo, Y. I. Son, G. T. Shim, Y. H. Kwon, and Y. S. Kim, Corros. Sci. Tech., 8, 27 (2009).
  13. Y. S. Kim, S. J. Park, and Y. R. Yoo, Corros. Sci. Tech., 11, 232 (2012). https://doi.org/10.14773/cst.2012.11.6.232
  14. Y. S. Kim, S. J. Park, and Y. R. Yoo, Corros. Sci. Tech., 12, 19 (2013).
  15. M. Mandel and L. Kruger, Mater. Sci. Eng. Technol., 4, 43 (2012).
  16. M. A. Karim, J. H. Bae, D. H. Kam, C. I. Kim, and Y. D. Park, Corros. Sci. Tech., 18, 92 (2019). https://doi.org/10.14773/cst.2019.18.3.92
  17. G. T. Seo, H. R. Jung, H. D. Lee, W. S. Chung, and C. S. Gee, J. Kor.ean Soc. Environ. Eng., 20, 1151 (1998).
  18. W. S. Chung, H. D. Lee, M. J. Yu, and P. J. Kwak, J. Korean Soc. Environ. Eng., 23, 1611 (2001).
  19. K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 17, 231 (2018).
  20. Y. Song, G. Jiang, Y. Chen, P. Zhao, and Y. Tian, Science reports, Article number: 6865 (2017).
  21. Y. K. Kim, Y. I. Heo, and D. K. Ra, J. Korean Soc. Environ. Technol., 3, 4, 293 (2002).
  22. R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control, 4th ed., p. 121, Wiley-Interscience (2008).
  23. H. Kook, K. H. Im, and I. Y. Yang, Proc. The Korean Society of Automotive Engineers, p. 1967, November (2012).
  24. Z. Liu, M. Curioni, P. Jamshidi, A. Walker, P. Prengnell, G. E. Thompson, and P. Skeldon, Appl. Surf. Sci., 314, 233 (2014). https://doi.org/10.1016/j.apsusc.2014.06.072
  25. M. G. Fontana, Corrosion Engineering, 3rd ed., p. 462, McGraw-Hill Book co., New York (1987).

Cited by

  1. Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature vol.19, pp.6, 2019, https://doi.org/10.14773/cst.2020.19.6.281