DOI QR코드

DOI QR Code

Platelet-Rich Plasma Enhances Proliferation and Migration and Inhibits Inflammatory Processes in Canine Chondrocytes

  • Kim, Dongyub (Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Jeong, Seong Mok (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Kwon, Youngsam (Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Yun, Sungho (Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2019.04.26
  • Accepted : 2019.08.10
  • Published : 2019.08.30

Abstract

This study was performed to assess the anti-inflammatory and cartilage regenerative effects of platelet-rich plasma (PRP) on canine chondrocytes. Proliferation and migration assays under both normal and lipopolysaccharide (LPS)-induced inflammatory conditions were performed with various concentrations of PRP (1% to 10%). The expression levels of genes related to osteoarthritis were evaluated in the following groups: PRP group, LPS group and LPS + PRP group. mRNA expression levels were detected using real-time polymerase chain reaction (RT-PCR). Proliferation assays showed significantly enhanced proliferation in all PRP-treated groups compared with the no serum group. Compared with 10% fetal bovine serum (FBS), PRP concentrations above 3% in the normal condition and 1% to 7% PRP in the LPS-induced inflammatory condition were found to significantly promote chondrocyte proliferation. In the normal condition, all PRP-treated groups showed significantly increased cell migration compared with the no serum group. Chondrocyte migration was decreased with LPS-induced inflammation, but PRP treatment resulted in significantly enhanced migration compared with the other groups in this condition. According to RT-PCR, the LPS + PRP group showed significantly higher levels of COL1A1, IL-6, aggrecan and lower levels of $TNF-{\alpha}$, MMP-1, MMP-3 mRNA expression compared to the LPS group. The results of this study suggest that PRP application can enhance the proliferation and migration of canine chondrocytes and improve canine articular cartilage regeneration.

Keywords

References

  1. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 2009; 11: 227. https://doi.org/10.1186/ar2655
  2. Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ, Lenz ME, Sah RL, Masuda K. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage 2006; 14: 1272-1280. https://doi.org/10.1016/j.joca.2006.05.008
  3. Arnoczky SP, Delos D, Rodeo SA. What Is Platelet-Rich Plasma? Oper Techn Sport Med 2011; 19: 142-148. https://doi.org/10.1053/j.otsm.2010.12.001
  4. Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol 2010; 225: 757-766. https://doi.org/10.1002/jcp.22274
  5. Cheng HF, Harris RC. Renal effects of non-steroidal antiinflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des 2005; 11: 1795-1804. https://doi.org/10.2174/1381612053764922
  6. Chien CS, Ho HO, Liang YC, Ko PH, Sheu MT, Chen CH. Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage. J Biomed Mater Res B Appl Biomater 2012; 100: 948-955.
  7. Dabiri Y, Li LP. Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee. Med Eng Phys 2013; 35: 1591-1598. https://doi.org/10.1016/j.medengphy.2013.05.005
  8. de Mos M, van der Windt AE, Jahr H, van Schie HTM, Weinans H, Verhaar JAN, van Osch GJVM. Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sport Med 2008; 36: 1171-1178. https://doi.org/10.1177/0363546508314430
  9. Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi A, Fornasari PM, Giannini S, Marcacci M. Plateletrich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011; 19: 528-535. https://doi.org/10.1007/s00167-010-1238-6
  10. Flannery CR, Little CB, Hughes CE, Curtis CL, Caterson B, Jones SA. IL-6 and its soluble receptor augment aggrecanasemediated proteoglycan catabolism in articular cartilage. Matrix Biol 2000; 19: 549-553. https://doi.org/10.1016/S0945-053X(00)00111-6
  11. Gaissmaier C, Koh JL, Weise K. Growth and differentiation factors for cartilage healing and repair. Injury 2008; 39 Suppl 1: S88-96. https://doi.org/10.1016/j.injury.2008.01.035
  12. Goldring MB. Anticytokine therapy for osteoarthritis. Expert Opin Biol Ther 2001; 1: 817-829. https://doi.org/10.1517/14712598.1.5.817
  13. Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J. The cartilage-bone interface. J Knee Surg 2012; 25: 85-97. https://doi.org/10.1055/s-0032-1319782
  14. Johnston SA, McLaughlin RM, Budsberg SC. Nonsurgical management of osteoarthritis in dogs. Vet Clin North Am Small Anim Pract 2008; 38: 1449-1470, viii. https://doi.org/10.1016/j.cvsm.2008.08.001
  15. Kaps C, Loch A, Haisch A, Smolian H, Burmester GR, Haupl T, Sittinger M. Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes. Med Biol Eng Comput 2002; 40: 485-490. https://doi.org/10.1007/BF02345083
  16. Malemud CJ. Anticytokine therapy for osteoarthritis: evidence to date. Drugs Aging 2010; 27: 95-115. https://doi.org/10.2165/11319950-000000000-00000
  17. Marti HP, McNeil L, Thomas G, Davies M, Lovett DH. Molecular characterization of a low-molecular-mass matrix metalloproteinase secreted by glomerular mesangial cells as PUMP-1. Biochem J 1992; 285: 899-905. https://doi.org/10.1042/bj2850899
  18. Moore AC, Burris DL. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas. J Biomech 2014; 47: 148-153. https://doi.org/10.1016/j.jbiomech.2013.09.020
  19. Moussa M, Lajeunesse D, Hilal G, El Atat O, Haykal G, Serhal R, Chalhoub A, Khalil C, Alaaeddine N. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage. Exp Cell Res 2017; 352: 146-156. https://doi.org/10.1016/j.yexcr.2017.02.012
  20. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003; 5: 94-103. https://doi.org/10.1186/ar630
  21. Nakagawa K, Yamagami T, Takemura N. Hepatocellular toxicosis associated with the alternate administration of carprofen and meloxicam in a siberian husky. J Vet Med Sci 2005; 67: 1051-1053. https://doi.org/10.1292/jvms.67.1051
  22. Otero M, Goldring MB. Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res Ther 2007; 9: 220. https://doi.org/10.1186/ar2292
  23. Roughley PJ, Mort JS. The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 2014; 1: 8. https://doi.org/10.1186/s40634-014-0008-7
  24. Samuels J, Krasnokutsky S, Abramson SB. Osteoarthritis: a tale of three tissues. Bull NYU Hosp Jt Dis 2008; 66: 244-250.
  25. Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 2000; 275: 10738-10744. https://doi.org/10.1074/jbc.275.15.10738
  26. Spreafico A, Chellini F, Frediani B, Bernardini G, Niccolini S, Serchi T, Collodel G, Paffetti A, Fossombroni V, Galeazzi M, Marcolongo R, Santucci A. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem 2009; 108: 1153-1165. https://doi.org/10.1002/jcb.22344
  27. Tchetina EV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis 2011; 2011: 683970. https://doi.org/10.1155/2011/683970
  28. Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 2012; 1824: 133-145. https://doi.org/10.1016/j.bbapap.2011.06.020
  29. Unemori EN, Bair MJ, Bauer EA, Amento EP. Stromelysin expression regulates collagenase activation in human fibroblasts. Dissociable control of two metalloproteinases by interferongamma . J Biol Chem 1991; 266: 23477-23482. https://doi.org/10.1016/S0021-9258(18)54522-1
  30. van Buul GM, Koevoet WL, Kops N, Bos PK, Verhaar JA, Weinans H, Bernsen MR, van Osch GJ. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med 2011; 39: 2362-2370. https://doi.org/10.1177/0363546511419278
  31. Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV. TNF-alpha and IL-1beta promote a disintegrinlike and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem 2011; 286: 39738-39749. https://doi.org/10.1074/jbc.M111.264549
  32. Wu L, Huang X, Li L, Huang H, Xu R, Luyten W. Insights on biology and pathology of HIF-1alpha/-2alpha, TGFbeta/BMP, Wnt/beta-catenin, and NF-kappaB pathways in osteoarthritis. Curr Pharm Des 2012; 18: 3293-3312. https://doi.org/10.2174/1381612811209023293
  33. Ye K, Di Bella C, Myers DE, Choong PF. The osteochondral dilemma: review of current management and future trends. ANZ J Surg 2014; 84: 211-217. https://doi.org/10.1111/ans.12108
  34. Zhao J, Zhang P, Qin L, Pan XH. Hypoxia is essential for bone-tendon junction healing: the molecular biological evidence. Int Orthop 2011; 35: 925-928. https://doi.org/10.1007/s00264-010-1157-7