References
- Z. Punthakee, R. Goldenberg & P. Katz. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian journal of diabetes, 42, S10-S15.
- D. Atlas. (2015). International diabetes federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation.
- N. Cho, J. E. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. W. Ohlrogge & B. Malanda. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271-281. https://doi.org/10.1016/j.diabres.2018.02.023
- Korea Centers for Disease Control. (2015). Korean national health and nutrition survey data. https://knkanes.cds.go.kr/
- I. Baik. (2019). Projection of Diabetes Prevalence in Korean Adults for the Year 2030 Using Risk Factors Identified from National Data. Diabetes & metabolism journal, 43(1), 90-96. https://doi.org/10.4093/dmj.2018.0043
- American Diabetes Association. (2004). Screening for type 2 diabetes. Diabetes care, 27(suppl 1), s11-s14. https://doi.org/10.2337/diacare.27.2007.S11
- J. L Gross, M. J. De Azevedo, S. P. Silveiro, L. H. Canani, M. L. Caramori & T. Zelmanovitz. (2005). Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes care, 28(1), 164-176. https://doi.org/10.2337/diacare.28.1.164
- J. Y. Lee et al. (2011). Development of a predictive model for type 2 diabetes mellitus using genetic and clinical data. Osong public health and research perspectives, 2(2), 75-82. https://doi.org/10.1016/j.phrp.2011.07.005
- A. M. Kanaya et al. (2005). Predicting the development of diabetes in older adults: the derivation and validation of a prediction rule. Diabetes Care, 28(2), 404-408. https://doi.org/10.2337/diacare.28.2.404
- J. Choi & Y. Suh. (2018). Deriving rules for identifying diabetic among individuals with metabolic syndrome. Journal of digital convergence, 16(11), 363-372. https://doi.org/10.14400/jdc.2018.16.11.363
- Y. M. Kim & S. H. Kang. (2015). Changes and determinants affecting on geographic variations in health behavior, prevalence of hypertension and diabetes in Korean. Journal of digital convergence, 13(11), 241-254. https://doi.org/10.14400/JDC.2015.13.11.241
- H. Y. Kim & H. S. Kim. (2018). Factors Affecting the Control of HbA1c in Type 2 Diabetic Patients. Journal of Convergence for Information Technology, 8(6), 75-84. https://doi.org/10.22156/CS4SMB.2018.8.6.075
- M. J. Lee, H. K. Kang & B. J. Seo. (2018). Correlation between Outpatient's Medical Adherence and National Insurance Types in the Type 2 Diabetes Mellitus. Journal of Convergence for Information Technology, 8(4), 9-14. https://doi.org/10.22156/CS4SMB.2018.8.4.009
- Z. C. Lipton, D. C. Kale, C. Elkan & R. Wetzel. (2015). Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677.
- E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart & J. Sun. (2016, December). Doctor ai: Predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare Conference (pp. 301-318).
- Y. S. Lee & S. S. Moon. (2011). The use of HbA1c for diagnosis of type 2 diabetes in Korea. The Korean Journal of Medicine, 80(3), 291-297.
- S. Hochreiter & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- A. Iyer, S Jeyalatha & R. Sumbaly. (2015) Diagnosis of Diabetes Using Classification Mining Techniques. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5, 1-14. https://doi.org/10.5121/ijdkp.2015.5101]
- V. A. Kumari & R. Chitra. (2013). Classification of diabetes disease using support vector machine. International Journal of Engineering Research and Applications, 3(2), 1797-1801.
- A. Sarwar & V. Sharma. (2012). Intelligent Naive Bayes approach to diagnose diabetes Type-2. International Journal of Computer Applications, IJCA Special Edition Nov, 14-16.
- P. Venkatesan & S. Anitha. (2006). Application of a radial basis function neural network for diagnosis of diabetes mellitus. Current Science (00113891), 91(9), 1195-1199.
- X. H. Meng, Y. X. Huang, D. P. Rao, Q. Zhang & Q. Liu. (2013). Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. The Kaohsiung journal of medical sciences, 29(2), 93-99. https://doi.org/10.1016/j.kjms.2012.08.016
- H. Temurtas, N. Yumusak & F. Temurtas. (2009). A comparative study on diabetes disease diagnosis using neural networks. Expert Systems with applications, 36(4), 8610-8615. https://doi.org/10.1016/j.eswa.2008.10.032
- R. Motka, V. Parmarl, B. Kumar & A. R. Verma. (2013, September). Diabetes mellitus forecast using different data mining techniques. In 2013 4th International Conference on Computer and Communication Technology (ICCCT) (pp. 99-103). IEEE.
- K. Polat & S. Gunes. (2007). An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital Signal Processing, 17(4), 702-710. https://doi.org/10.1016/j.dsp.2006.09.005
- Z. Alhassan, A. S. McGough, R. Alshammari, T. Daghstani, D. Budgen & N. Al Moubayed. (2018). Type-2 diabetes mellitus diagnosis from time series clinical data using deep learning models. In International Conference on Artificial Neural Networks. p468-478.