DOI QR코드

DOI QR Code

공간 구성요소 및 지각단서를 활용한 가상환경 내 깊이지각 보정

Correction of Depth Perception in Virtual Environment Using Spatial Compnents and Perceptual Clues

  • Chae, Byung-Hoon (Department of Industrial Engineering, Ajou University) ;
  • Lee, In-Soo (Department of Industrial Engineering, Ajou University) ;
  • Chae, U-Ri (Department of Industrial Engineering, Ajou University) ;
  • Lee, Joo-Yeoun (Department of Industrial Engineering, Ajou University)
  • 투고 : 2019.05.22
  • 심사 : 2019.08.20
  • 발행 : 2019.08.28

초록

가상환경을 활용한 시뮬레이션과 같은 교육, 훈련 등이 다양한 분야에 적용되고 있는 만큼 그 활용성은 무궁무진하다. 하지만 가상환경에서 훈련을 함에 있어 깊이지각의 과소추정이 존재하며, 이는 향후 훈련의 타당도에 문제가 될 수 있다. 관련 연구에서는 이를 해결하기 위해 하향식 보정방안을 적용하여 문제를 해결하려 하였으나 그 결과가 학습에 의한 효과인지 실제 지각의 변화인지에 대한 구분이 어렵다는 단점이 있다. 이에 본 연구에서는 실험결과를 통하여 공간 구성요수 중 비례가 깊이지각에 유의미한 영향을 끼치는 것을 확인하였으며, 비례와 깊이지각 단서를 함께 보정하여 실험할 경우 깊이지각 중 크기지각이 매우 정확해진다는 것을 확인하였다. 이에 본 연구에서는 깊이지각의 정확도를 높이기 위해 공간 구성요소와 깊이지각을 활용한 보정방안을 제시한다.

As the education and training is such a virtual environment is applied to various fields, its usability is endless. However, there is an underestimation of the depth of perception in the training environment. In order to solve this problem, we tried to solve the problem by applying the top-down correction method. However, it is difficult to classify the result as a learning effect or perception change. In this study, it was confirmed that the proportion of spatial components of urine had a significant effect on the depth perception, and it was confirmed that the size perception were corrected together. In this study, we propose a correction method using spatial component and depth perception to improve the accuracy of depth perception.

키워드

참고문헌

  1. J. M Loomis & J. M. Knapp. (2003). Visual perception of egocentric distance in real and virtual environments. Virtual and adaptive environments, 11, 21-46. DOI : 10.1145/2543581.2543590
  2. S. S. Fisher, M. McGreevy, J. Humphries & W. Robinett. (1987). Virtual environment display system. I3D '86 Proceedings of the 1986 workshop on Interactive 3D graphics, 11 77-87. DOI : 10.1145/319120.319127
  3. J. M. Loomis & J. M. Knapp. (2003). Visual perception of egocentric distance in real and virtual environments. Virtual and adaptive environments, 11, 21-46. DOI : 10.1145/2543581.2543590
  4. H. S. Yu, D. H. Shin & S. S. Nam. (2017). User Experience in Virtual Reality Games: the Effect of Presence on Enjoyment. Korean Telecommunications Policy Review, 24(3), 85-125.
  5. R. G. Eggleston, W. P. Janson & K. A. Aldrich, (1996). "Virtual reality system effects on size-distance judgements in a virtual environment," Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, Santa Clara, CA, USA, 139-146. DOI : 10.1109/VRAIS.1996.490521
  6. Y. J. Shin. (2005). A basic study for The sense of real improvement in Virtual Reality Journal of the Architectural Institute of Korea Planning & Design 7(21), 11-18.
  7. E. U. Kim (2003). A review on depth and size perception, Journal of Social Science, 20(1). 3-27.
  8. A. Naceri, R. Chellali, F. Dionnet & S. Toma. (2010). Depth perception within virtual environments: comparison between two display technologies. International Journ. on Advances in Intelligent Systems, 3(1), 51-64.
  9. J. E. Swan, A. Jones, E. Kolstad, M. A. Livingston & H. S. Smallman.(2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE transactions on visualization and computer graphics, 13(3), 429-442. DOI : 10.1109/TVCG.2007.1035
  10. A. Richardson. (2004). The Effect Of Feedback Training On Distance Estimation In Virtual Environments. Applied Cognitive Psychology, 19. 1089-1108. DOI : 10.1002/acp.1140
  11. B. G. Witmer & W. J. Sadowski (1998). Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments. Human Factors, 40(3), 478-488. DOI : 10.1518/001872098779591340
  12. S. H. Creem-Regehr, J. K. Stefanucci, W. B. Thompson, N. Nash & M. McCardell (2015). Egocentric distance perception in the oculus rift (dk2). In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception. ACM, New York, NY, USA, 47-50. DOI : 10.1145/2804408.2804422
  13. D. Banakou, R. Groten & M. Slater. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences, 110(31), 12846-12851. DOI : https://doi.org/10.1073/pnas.1306779110
  14. J. Jacobson & M. Lewis. (2005). Game engine virtual reality with CaveUT. Computer, 38(4), 79-82. DOI : 10.1109/MC.2005.126
  15. V. Interrante, B. Ries & L. Anderson. (2006). Distance Perception in Immersive Virtual Environments, Revisited, In Proceedings of the IEEE conference on Virtual Reality (VR '06). IEEE Computer Society, Washington, DC, USA, 3-10. DOI : 10.1109/VR.2006.52