참고문헌
- L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, 'A Review on the Key Issues for Lithium-ion Battery Management in Electric Vehicles' J. Power Sources, 226, 272-288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- D. Jin, J. Park, C. B. Dzakpasu, B. Yoon, M.-H. Ryou, and Y. M. Lee, 'Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode' J. Korean Electrochem. Soc., 22, 69-78 (2019). https://doi.org/10.5229/JKES.2019.22.2.69
- S. Kim, Y. J. Kim, and W.-H. Ryu, 'Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries' J. Korean Electrochem. Soc., 22, 22-35 (2019). https://doi.org/10.5229/JKES.2019.22.1.22
- T.-H. Kim, J.-S. Park, S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase' Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
- D.-M. Jeon, B.-K Na and Y.-W. Rhee, 'Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery' Korean Chem. Eng. Res., 56, 798-803 (2018).
- K. B. Hueso, M. Armand and T. Rojo, 'High Temperature Sodium Batteries: Status, Challenges and Future Trends' Energy Environ. Sci., 6, 734-749 (2013). https://doi.org/10.1039/c3ee24086j
- Z. Song and H. Zhou, 'Towards Sustainable and Versatile Energy Storage Devices: An Overview of Organic Electrode Materials' Energy Environ. Sci., 6, 2280-2301 (2013). https://doi.org/10.1039/c3ee40709h
- T. B. Schon, B. T. McAllister, P.-F. Li, and D. S. Seferos, 'The Rise of Organic Electrode Materials for Energy Storage' Chem. Soc. Rev., 45, 6345-6404 (2016). https://doi.org/10.1039/C6CS00173D
- J.-K. Kim, Y. Kim, S. Park, H. Kob, and Y. Kim, 'Encapsulation of Organic Active Materials in Carbon Nanotubes for Application to High Electrochemical Performance Sodium Batteries' Energy Environ. Sci., 9, 1264-1269 (2016). https://doi.org/10.1039/C5EE02806J
- Y. Wang, K. Kretschmer, J. Zhang, A. K. Mondal, X. Guo, and G. Wang, 'Organic Sodium Terephthalate@Graphene Hybrid Anode Materials for Sodium-Ion Batteries' RSC Adv., 6, 57098-57102 (2016). https://doi.org/10.1039/C6RA11809G
- J.-K. Kim, A. Matic, J.-H. Ahn, and P. Jacobsson, 'Improving the Stability of An Organic Battery with An Ionic Liquid-based Polymer Electrolyte' RSC Adv., 2, 9795-9797 (2012). https://doi.org/10.1039/c2ra21416d
-
Q. Yu, D. Chen, J. Liang, Y. Chu, Y. Wu, W. Zhang, Y. Li, L. Li, and R. Zeng, 'Facile Synthesis of
$Li_2C_8H_4O_4$ -Graphene Composites as High-rate and Sustainable Anode Materials for Lithium Ion Batteries' RSC Adv., 4, 59498-59502 (2014). https://doi.org/10.1039/C4RA12052C - J.-E. Lim and J.-K. Kim, 'Optimization of Electrolyte and Carbon Conductor for Dilithium Terephthalate Organic Batteries' Korean J. Chem. Eng., 35, 2464-2467 (2018). https://doi.org/10.1007/s11814-018-0152-3
- J. Qian, M. Zhou, Y. Cao, X. Ai, and H. Yang, 'Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries' J. Phys. Chem. C, 114, 3477-3482 (2010). https://doi.org/10.1021/jp912102k
- J.-K. Kim, Supercritical Synthesis in Combination with A Spray Process for 3D Porous Microsphere Lithium Iron Phosphate' CrystEngComm, 16, 2818-2822 (2014). https://doi.org/10.1039/C3CE42264J
- Y. N. Ko, S. B. Park, K. Y. Jung, and Y. C. Kang, 'One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide-Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries' Nano Lett., 13, 5462-5466 (2013). https://doi.org/10.1021/nl4030352