DOI QR코드

DOI QR Code

흑연 코팅 집전체를 이용한 Lithium Terephthalate 기반 리튬-유기 이차전지의 전기화학적 특성 개선

Improving the Electrochemical Properties of Lithium Terephthalate-based Lithium-Organic Battery with A Graphite Coated Current Collector

  • 권오현 (청주대학교에너지융합공학과) ;
  • 김종빈 (청주대학교에너지융합공학과) ;
  • 김재광 (청주대학교에너지융합공학과)
  • Kwon, O Hyeon (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kim, Jong Bin (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University)
  • 투고 : 2019.07.09
  • 심사 : 2019.08.13
  • 발행 : 2019.08.31

초록

유기이차전지가 가지고 있는 전극 내 낮은 접합력과 높은 계면저항의 단점을 해결하기 위하여 본 연구에서는 흑연 코팅 처리된 집전체를 사용하여 lithium terephthalate (LTA)전지의 전기화학적 특성 변화를 분석하였다. LTA 음극 활물질은 산의 이온 치환반응에 의하여 불순물 없이 합성되어 졌다. 막대 형태의 LTA 활물질로 제작된 전극과 흑연 코팅 처리된 집전체와의 접합특성은 SEM 단면과 EIS를 통하여 확인하였다. 흑연 코팅된 집전체를 사용한 LTA전지의 계면저항은 현저히 감소되었다. 순수한 금속 집전체 LTA 전지와 흑연 코팅 처리된 금속 기판 LTA 전지는 0.1C의 두 번째 사이클에서 107.6 mAh/g와 148.8 mAh/g의 방전 용량을 보인다. 흑연 코팅된 집전체를 사용한 LTA 전지는 순수한 LTA 전지에 비하여 우수한 수명 특성과 높은 방전 용량, 그리고 높은 고율 특성을 가진다.

In this study, we investigate the electrochemical performance of lithium terephthalate (LTA) battery using graphite coated metal current collector to overcome the disadvantages of organic batteries which is high interfacial resistance between current collector and electrode. The LTA anode material is synthesized by acid-based ion exchange reaction without impurities. The contact properties between stick-type LTA-based electrode and graphite coated current collector are estimated by the cross-section SEM and EIS. The graphite coated current collector significantly reduced the interfacial resistance of the LTA battery. The second discharge capacities of bare current collector LTA and graphite coated current collector LTA batteries are 107.6 mAh/g and 148.8 mAh/g at 0.1C, respectively. The graphite coated current collector LTA batteries show higher cycle life, higher discharge capacity, and higher rate-capability than bare LTA batteries.

키워드

참고문헌

  1. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, 'A Review on the Key Issues for Lithium-ion Battery Management in Electric Vehicles' J. Power Sources, 226, 272-288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
  2. D. Jin, J. Park, C. B. Dzakpasu, B. Yoon, M.-H. Ryou, and Y. M. Lee, 'Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode' J. Korean Electrochem. Soc., 22, 69-78 (2019). https://doi.org/10.5229/JKES.2019.22.2.69
  3. S. Kim, Y. J. Kim, and W.-H. Ryu, 'Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries' J. Korean Electrochem. Soc., 22, 22-35 (2019). https://doi.org/10.5229/JKES.2019.22.1.22
  4. T.-H. Kim, J.-S. Park, S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase' Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  5. D.-M. Jeon, B.-K Na and Y.-W. Rhee, 'Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery' Korean Chem. Eng. Res., 56, 798-803 (2018).
  6. K. B. Hueso, M. Armand and T. Rojo, 'High Temperature Sodium Batteries: Status, Challenges and Future Trends' Energy Environ. Sci., 6, 734-749 (2013). https://doi.org/10.1039/c3ee24086j
  7. Z. Song and H. Zhou, 'Towards Sustainable and Versatile Energy Storage Devices: An Overview of Organic Electrode Materials' Energy Environ. Sci., 6, 2280-2301 (2013). https://doi.org/10.1039/c3ee40709h
  8. T. B. Schon, B. T. McAllister, P.-F. Li, and D. S. Seferos, 'The Rise of Organic Electrode Materials for Energy Storage' Chem. Soc. Rev., 45, 6345-6404 (2016). https://doi.org/10.1039/C6CS00173D
  9. J.-K. Kim, Y. Kim, S. Park, H. Kob, and Y. Kim, 'Encapsulation of Organic Active Materials in Carbon Nanotubes for Application to High Electrochemical Performance Sodium Batteries' Energy Environ. Sci., 9, 1264-1269 (2016). https://doi.org/10.1039/C5EE02806J
  10. Y. Wang, K. Kretschmer, J. Zhang, A. K. Mondal, X. Guo, and G. Wang, 'Organic Sodium Terephthalate@Graphene Hybrid Anode Materials for Sodium-Ion Batteries' RSC Adv., 6, 57098-57102 (2016). https://doi.org/10.1039/C6RA11809G
  11. J.-K. Kim, A. Matic, J.-H. Ahn, and P. Jacobsson, 'Improving the Stability of An Organic Battery with An Ionic Liquid-based Polymer Electrolyte' RSC Adv., 2, 9795-9797 (2012). https://doi.org/10.1039/c2ra21416d
  12. Q. Yu, D. Chen, J. Liang, Y. Chu, Y. Wu, W. Zhang, Y. Li, L. Li, and R. Zeng, 'Facile Synthesis of $Li_2C_8H_4O_4$-Graphene Composites as High-rate and Sustainable Anode Materials for Lithium Ion Batteries' RSC Adv., 4, 59498-59502 (2014). https://doi.org/10.1039/C4RA12052C
  13. J.-E. Lim and J.-K. Kim, 'Optimization of Electrolyte and Carbon Conductor for Dilithium Terephthalate Organic Batteries' Korean J. Chem. Eng., 35, 2464-2467 (2018). https://doi.org/10.1007/s11814-018-0152-3
  14. J. Qian, M. Zhou, Y. Cao, X. Ai, and H. Yang, 'Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries' J. Phys. Chem. C, 114, 3477-3482 (2010). https://doi.org/10.1021/jp912102k
  15. J.-K. Kim, Supercritical Synthesis in Combination with A Spray Process for 3D Porous Microsphere Lithium Iron Phosphate' CrystEngComm, 16, 2818-2822 (2014). https://doi.org/10.1039/C3CE42264J
  16. Y. N. Ko, S. B. Park, K. Y. Jung, and Y. C. Kang, 'One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide-Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries' Nano Lett., 13, 5462-5466 (2013). https://doi.org/10.1021/nl4030352