참고문헌
- M. A. Oskoei and H. Hu, "Myoelectric control systems-a survey," Biomedical Signal Processing and Control, vol. 2, no. 4, pp. 275-294, Oct., 2007. https://doi.org/10.1016/j.bspc.2007.07.009
- M. Hakonen, H. Piitulainen, and A. Visala, "Current state of digital signal processing in myoelectric interfaces and related applications," Biomedical Signal Processing and Control, vol. 18, pp. 334-359, Apr., 2015. https://doi.org/10.1016/j.bspc.2015.02.009
- Y.-J. Kim, D.-H. Lee, H. Park, J.-H. Park, and J.-H. Bae, "A Novel Input Device for Robotic Prosthetic Hand: Design and Preliminary Results," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018.
- C. Potluri, M. Anugolu, D. S. Naidu, M. P. Schoen, and S. C. Chiu, "Real-time embedded frame work for sEMG skeletal muscle force estimation and LQG control algorithms for smart upper extremity prostheses," Engineering Applications of Artificial Intelligence, vol. 46, pp. 67-81, Nov., 2015. https://doi.org/10.1016/j.engappai.2015.08.007
- J. He, D. Zhang, N. Jiang, X. Sheng, D. Farina, and X. Zhu, "User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control," Journal of Neural Engineering, vol. 12, Jun., 2015.
- H.-J. Hwang, J. M. Hahne, and K.-R. Muller, "Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom," Journal of Neural Engineering, vol. 11, no. 5, Aug., 2014.
- F. Clemente, M. D'Alonzo, M. Controzzi, B. B. Edin, and C. Cipriani, "Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 12, pp. 1314-1322, Dec., 2016. https://doi.org/10.1109/TNSRE.2015.2500586
- G. R. Naik, A. H. Al-Timemy, and H. T. Nguyen, "Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 8, pp. 837-846, Aug., 2016. https://doi.org/10.1109/TNSRE.2015.2478138
- Y.-J. Kim, D.-H. Lee, H. Park, J.-H. Park, J.-H. Bae, and M.-H. Baeg, "Wrist and Grasping Forces Estimation using Electromyography for Robotic Prosthesis," Journal of Korea Robotics Society, vol. 12, no. 2, pp. 206-216, Jun., 2017. https://doi.org/10.7746/jkros.2017.12.2.206
- Q. Cheng, H. Zhou, and J. Cheng, "The Fisher-Markov Selector: Fast Selecting Maximally Separable Feature Subset for Multiclass Classification with Applications to High-Dimensional Data," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 6, pp. 1217-1233, Jun., 2011. https://doi.org/10.1109/TPAMI.2010.195
- Y. Su, S. Shan, X. Chen, and W. Gao, "Classifiability-Based Discriminatory Projection Pursuit," IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 2050-2061, Dec., 2011. https://doi.org/10.1109/TNN.2011.2170220
- S. Soman and Jayadeva, "High performance EEG signal classification using classifiability and the Twin SVM," Applied Soft Computing, vol. 30, pp. 305-318, May, 2015. https://doi.org/10.1016/j.asoc.2015.01.018
- Y. Kamei and S. Okada, "Classification of forearm and finger motions using electromyogram and arm-shape-changes," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016, DOI: 10.1109/EMBC.2016.7592016.
- F. Riillo, L.R. Quitadamo, F. Cavrini, E. Gruppioni, C.A. Pinto, N. Cosimo Pasto, L. Sbernini, L. Albero, and G. Saggio, "Optimization of EMG-based hand gesture recognition: Supervised vs. unsupervised data preprocessing on healthy subjects and transradial amputees," Biomedical Signal Processing and Control, vol. 14, pp. 117-125, Nov., 2014. https://doi.org/10.1016/j.bspc.2014.07.007
- A. Xiong, X. Zhao, J. Han, G. Liu, and Q. Ding, "An user-independent gesture recognition method based on sEMG decomposition," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, DOI: 10.1109/IROS.2015.7353969.
- D. Ge, E. Le Carpentier, and D. Farina, "Unsupervised Bayesian Decomposition of Multiunit EMG Recordings Using Tabu Search," IEEE Transactions on Biomedical Engineering, vol. 57, no. 3, pp. 561-571, Mar., 2010. https://doi.org/10.1109/TBME.2009.2022277
- M. Karg, G. Venture, J. Hoey, and D. Kulic, "Human Movement Analysis as a Measure for Fatigue: A Hidden Markov-Based Approach," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 3, pp. 470-481, May, 2014. https://doi.org/10.1109/TNSRE.2013.2291327
- Q. Zhang, M. Hayashibe, P. Fraisse, and D. Guiraud, "FES-Induced Torque Prediction With Evoked EMG Sensing for Muscle Fatigue Tracking," IEEE/ASME Transactions on Mechatronics, vol. 16, no. 5, pp. 816-826, Oct., 2011. https://doi.org/10.1109/TMECH.2011.2160809
- G.-C. Jeong, Y. Kim, W. Choi, G. Gu, H.-J. Lee, M. B. Hong, and K. Kim, "On the Design of a Novel Underactuated Robotic Finger Prosthesis for Partial Hand Amputation," IEEE RAS-EMBS International Conference on Rehabilitation Robotics (ICORR), Toronto, Canada, 2019.
- C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, Springer New York, 2006.
- A. D. Bellingegni, E. Gruppioni, G. Colazzo, A. Davalli, R. Sacchetti, E. Guglielmelli, and L. Zollo, "NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation," Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, p. 82, Aug., 2017. https://doi.org/10.1186/s12984-017-0290-6
- K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, DOI: 10.1109/ICCV.2015.123.