DOI QR코드

DOI QR Code

Influence of different universal adhesives on the repair performance of hybrid CAD-CAM materials

  • Received : 2018.11.28
  • Accepted : 2019.05.04
  • Published : 2019.08.31

Abstract

Objectives: The aim of this study was to investigate the microshear bond strength (${\mu}SBS$) of different universal adhesive systems applied to hybrid computer-aided design/computer-aided manufacturing (CAD-CAM) restorative materials repaired with a composite resin. Materials and Methods: Four types of CAD-CAM hybrid block materials-Lava Ultimate (LA), Vita Enamic (VE), CeraSmart (CS), and Shofu Block HC (SH)-were used in this study, in combination with the following four adhesive protocols: 1) control: porcelain primer + total etch adhesive (CO), 2) Single Bond Universal (SB), 3) All Bond Universal (AB), and 4) Clearfil Universal Bond (CU). The ${\mu}SBS$ of the composite resin (Clearfil Majesty Esthetic) was measured and the data were analyzed using two-way analysis of variance and the Tukey test, with the level of significance set at p < 0.05. Results: The CAD-CAM block type and block-adhesive combination had significant effects on the bond strength values (p < 0.05). Significant differences were found between the following pairs of groups: VE/CO and VE/AB, CS/CO and CS/AB, VE/CU and CS/CU, and VE/AB and CS/AB (p < 0.05). Conclusions: The ${\mu}SBS$ values were affected by hybrid block type. All tested universal adhesive treatments can be used as an alternative to the control treatment for repair, except the AB system on VE blocks (the VE/AB group). The ${\mu}SBS$ values showed variation across different adhesive treatments on different hybrid CAD-CAM block types.

Keywords

References

  1. Lise DP, Van Ende A, De Munck J, Vieira L, Baratieri LN, Van Meerbeek B. Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging. Oper Dent 2017;42:73-81. https://doi.org/10.2341/15-263-L
  2. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater 2014;30:564-569. https://doi.org/10.1016/j.dental.2014.02.019
  3. Bottino MA, Campos F, Ramos NC, Rippe MP, Valandro LF, Melo RM. Inlays made from a hybrid material: adaptation and bond strengths. Oper Dent 2015;40:E83-E91. https://doi.org/10.2341/13-343-L
  4. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29:419-426. https://doi.org/10.1016/j.dental.2013.01.002
  5. Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. Open Dent J 2013;7:118-122. https://doi.org/10.2174/1874210620130904003
  6. Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent 2016;28:56-66. https://doi.org/10.1111/jerd.12174
  7. Quinn GD, Giuseppetti AA, Hoffman KH. Chipping fracture resistance of dental CAD/CAM restorative materials: part I--procedures and results. Dent Mater 2014;30:e99-e111.
  8. Ferrari M, Giovannetti A, Carrabba M, Bonadeo G, Rengo C, Monticelli F, Vichi A. Fracture resistance of three porcelain-layered CAD/CAM zirconia frame designs. Dent Mater 2014;30:e163-e168.
  9. Gordan VV, Riley J 3rd, Geraldeli S, Williams OD, Spoto JC 3rd, Gilbert GH; National Dental PBRN Collaborative Group. The decision to repair or replace a defective restoration is affected by who placed the original restoration: findings from the National Dental PBRN. J Dent 2014;42:1528-1534. https://doi.org/10.1016/j.jdent.2014.09.005
  10. Kimmich M, Stappert CF. Intraoral treatment of veneering porcelain chipping of fixed dental restorations: a review and clinical application. J Am Dent Assoc 2013;144:31-44. https://doi.org/10.14219/jada.archive.2013.0011
  11. Stawarczyk B, Krawczuk A, Ilie N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin Oral Investig 2015;19:299-308. https://doi.org/10.1007/s00784-014-1269-3
  12. Munoz MA, Luque-Martinez I, Malaquias P, Hass V, Reis A, Campanha NH, Loguercio AD. In vitro longevity of bonding properties of universal adhesives to dentin. Oper Dent 2015;40:282-292. https://doi.org/10.2341/14-055-L
  13. Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J, Van Meerbeek B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J 2011;56 Suppl 1:31-44. https://doi.org/10.1111/j.1834-7819.2011.01294.x
  14. Ustun O, Buyukhatipoglu IK, Secilmis A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont 2018;27:748-754. https://doi.org/10.1111/jopr.12564
  15. Al-Thagafi R, Al-Zordk W, Saker S. Influence of surface conditioning protocols on reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic. J Adhes Dent 2016;18:135-141.
  16. Elsaka SE. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent Mater J 2015;34:161-167. https://doi.org/10.4012/dmj.2014-159
  17. Loomans B, Ozcan M. Intraoral repair of direct and indirect restorations: procedures and guidelines. Oper Dent 2016;41:S68-S78. https://doi.org/10.2341/15-269-LIT
  18. Duarte S, Sartori N, Phark JH. Ceramic-reinforced polymers: CAD/CAM hybrid restorative materials. Curr Oral Health Rep 2016;3:198-202. https://doi.org/10.1007/s40496-016-0102-2
  19. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont 2015;28:227-235. https://doi.org/10.11607/ijp.4244
  20. Toledano M, Osorio R, Osorio E, Aguilera FS, Yamauti M, Pashley DH, Tay F. Durability of resin-dentin bonds: effects of direct/indirect exposure and storage media. Dent Mater 2007;23:885-892. https://doi.org/10.1016/j.dental.2006.06.030
  21. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, Finger WJ, Arksornnukit M. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J 2014;33:705-710. https://doi.org/10.4012/dmj.2014-208
  22. Isolan CP, Valente LL, Munchow EA, Basso GR, Pimentel AH, Schwantz JK, da Silva AV, Moraes RR. Bond strength of a universal bonding agent and other contemporary dental adhesives applied on enamel, dentin, composite, and porcelain. Appl Adhes Sci 2014;2:25. https://doi.org/10.1186/s40563-014-0025-x
  23. Barutcigil K, Barutcigil C, Kul E, Ozarslan MM, Buyukkaplan US. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont 2019;28:71-78. https://doi.org/10.1111/jopr.12574
  24. Yoo JY, Yoon HI, Park JM, Park EJ. Porcelain repair - influence of different systems and surface treatments on resin bond strength. J Adv Prosthodont 2015;7:343-348. https://doi.org/10.4047/jap.2015.7.5.343
  25. Kassotakis EM, Stavridakis M, Bortolotto T, Ardu S, Krejci I. Evaluation of the effect of different surface treatments on luting CAD/CAM composite resin overlay workpieces. J Adhes Dent 2015;17:521-528.
  26. Baena E, Vignolo V, Fuentes MV, Ceballos L. Influence of repair procedure on composite-to-composite microtensile bond strength. Am J Dent 2015;28:255-260.

Cited by

  1. Microshear bond strength of contemporary self-adhesive resin cements to CAD/CAM restorative materials: effect of surface treatment and aging vol.34, pp.22, 2019, https://doi.org/10.1080/01694243.2020.1763543