References
- Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. 2019. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 78-79: 284-291. https://doi.org/10.1016/j.matbio.2018.02.012
- Camaioni A, Salustri A, Yanagishita M, Hascall VC. 1996. Proteoglycans and proteins in the extracellular matrix of mouse cumulus cell-oocyte complexes. Arch. Biochem. Biophys. 325: 190-198. https://doi.org/10.1006/abbi.1996.0024
- Viola M, Karousou E, D'Angelo ML, Caon I, De Luca G, Passi A, et al. 2015. Regulated Hyaluronan Synthesis by Vascular Cells. Int. J. Cell Biol. 2015: 208303. https://doi.org/10.1155/2015/208303
- Aya KL, Stern R. 2014. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen. 22: 579-593. https://doi.org/10.1111/wrr.12214
- Nguyen N, Kumar A, Chacko S, Ouellette RJ, Ghosh A. 2017. Human hyaluronic acid synthase-1 promotes malignant transformation via epithelial-to-mesenchymal transition, micronucleation and centrosome abnormalities. Cell Commun. Signal. 15(1): 48. https://doi.org/10.1186/s12964-017-0204-z
- Stern R, Kogan G, Jedrzejas MJ, Soltes L. 2007. The many ways to cleave hyaluronan. Biotechnol. Adv. 25: 537-557. https://doi.org/10.1016/j.biotechadv.2007.07.001
- Nishihara T, Morimoto Y. 2017. Evaluation of transfer media containing different concentrations of hyaluronan for human in vitro fertilization. Reprod. Med. Biol. 16: 349-353. https://doi.org/10.1002/rmb2.12051
- Marei WF, Ghafari F, Fouladi-Nashta AA. 2012. Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes. Theriogenology 78: 670-677. https://doi.org/10.1016/j.theriogenology.2012.03.013
- Stern R, Jedrzejas MJ. 2006. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem. Rev. 106: 818-839. https://doi.org/10.1021/cr050247k
- Kim E, Baba D, Kimura M, Yamashita M, Kashiwabara S, Baba T. 2005. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc. Natl. Acad. Sci. U S A 102: 18028-18033. https://doi.org/10.1073/pnas.0506825102
- Kimura M, Ishida K, Kashiwabara S, Baba T. 2009. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol. Reprod. 80: 545-554. https://doi.org/10.1095/biolreprod.108.072553
- Yoon S, Chang KT, Cho H, Moon J, Kim JS, Min SH, et al. 2014. Characterization of pig sperm hyaluronidase and improvement of the digestibility of cumulus cell mass by recombinant pSPAM1 hyaluronidase in an in vitro fertilization assay. Anim. Reprod. Sci. 150: 107-114. https://doi.org/10.1016/j.anireprosci.2014.09.002
- Myles DG, Primakoff P. 1984. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J. Cell Biol. 99: 1634-1641. https://doi.org/10.1083/jcb.99.5.1634
- Gmachl M, Kreil G. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. U S A 90: 3569-3573. https://doi.org/10.1073/pnas.90.8.3569
- Park C, Kim YH, Lee SR, Park S, Jung Y, Lee Y, et al. 2018. Characterization of Recombinant Bovine Sperm Hyaluronidase and Identification of an Important Asn-XSer/Thr Motif for Its Activity. J. Microbiol. Biotechnol. 28: 1547-1553. https://doi.org/10.4014/jmb.1804.04016
- Geetha-Habib M, Park HR, Lennarz WJ. 1990. In vivo N-glycosylation and fate of Asn-X-Ser/Thr tripeptides. J. Biol. Chem. 265: 13655-13660. https://doi.org/10.1016/S0021-9258(18)77399-7
- Gabius HJ. 2018. The sugar code: Why glycans are so important. Biosystems 164: 102-111. https://doi.org/10.1016/j.biosystems.2017.07.003