References
- Laskin DL. 2009. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem. Res. Toxicol. 22: 1376-1385. https://doi.org/10.1021/tx900086v
- Gordon S. 2016. Phagocytosis: an immunobiologic process. Immunity 44: 463-475. https://doi.org/10.1016/j.immuni.2016.02.026
- Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445-455. https://doi.org/10.1038/nature12034
- Aderem A, Underhill DM. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593-623. https://doi.org/10.1146/annurev.immunol.17.1.593
- Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. 2016. Mitogen-activated protein kinases and mitogen kinase phosphatase 1: a critical interplay in macrophage biology. Front Mol. Biosci. 3: 28.
- Rao KM. 2001. MAP kinase activation in macrophages. J. Leukoc. Biol. 69: 3-10.
- Valledor AF, Sanchez-Tillo E, Arpa L, Park JM, Caelles C, Lloberas J, et al. 2008. Selective roles of MAPKs during the macrophage response to IFN-gamma. J. Immunol. 180: 4523-4529. https://doi.org/10.4049/jimmunol.180.7.4523
- Baeuerle PA, Henkel T. 1994. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12: 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
- Grimm S, Baeuerle PA. 1993. The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem. J. 290 (Pt 2): 297-308. https://doi.org/10.1042/bj2900297
- Ghosh S, May MJ, Kopp EB. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
- Taverniti V, Guglielmetti S. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6: 261-274. https://doi.org/10.1007/s12263-011-0218-x
- Yesilova Y, Calka O, Akdeniz N, Berktas M. 2012. Effect of probiotics on the treatment of children with atopic dermatitis. Ann. Dermatol. 24: 189-193. https://doi.org/10.5021/ad.2012.24.2.189
- Doege K, Grajecki D, Zyriax BC, Detinkina E, Zu Eulenburg C, Buhling KJ. 2012. Impact of maternal supplementation with probiotics during pregnancy on atopic eczema in childhood--a meta-analysis. Br. J. Nutr. 107: 1-6. https://doi.org/10.1017/S0007114511003400
- Nation ML, Dunne EM, Joseph SJ, Mensah FK, Sung V, Satzke C, et al. 2017. Impact of Lactobacillus reuteri colonization on gut microbiota, inflammation, and crying time in infant colic. Sci. Rep. 7: 15047. https://doi.org/10.1038/s41598-017-15404-7
- Chau K, Lau E, Greenberg S, Jacobson S, Yazdani-Brojeni P, Verma N, et al. 2015. Probiotics for infantile colic: a randomized, double-blind, placebo-controlled trial investigating Lactobacillus reuteri DSM 17938. J. Pediatr. 166: 74-78. https://doi.org/10.1016/j.jpeds.2014.09.020
- Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. 2010. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64: 636-643. https://doi.org/10.1038/ejcn.2010.19
- Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Moller K, Svendsen KD, et al. 2010. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br. J. Nutr. 104: 1831-1838. https://doi.org/10.1017/S0007114510002874
- Ahmad K, Fatemeh F, Mehri N, Maryam S. 2013. Probiotics for the treatment of pediatric helicobacter pylori infection: a randomized double blind clinical trial. Iran J. Pediatr. 23: 79-84.
- Hsieh PS, Tsai YC, Chen YC, Teh SF, Ou CM, King VA. 2012. Eradication of Helicobacter pylori infection by the probiotic strains Lactobacillus johnsonii MH-68 and L. salivarius ssp. salicinius AP-32. Helicobacter 17: 466-477. https://doi.org/10.1111/j.1523-5378.2012.00992.x
- Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. 2017. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 9: 111-122. https://doi.org/10.1007/s12602-017-9264-z
- Capozzi V, Russo P, Ladero V, Fernandez M, Fiocco D, Alvarez MA, et al. 2012. Biogenic amines degradation by lactobacillus plantarum: toward a potential application in wine. Front Microbiol. 3: 122. https://doi.org/10.3389/fmicb.2012.00122
- Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, et al. 2010. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment. Genet Mol. Res. 9: 2191-2198. https://doi.org/10.4238/vol9-4gmr848
- Kawashima T, Hayashi K, Kosaka A, Kawashima M, Igarashi T, Tsutsui H, et al. 2011. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int. Immunopharmacol. 11: 2017-2024. https://doi.org/10.1016/j.intimp.2011.08.013
- Kikuchi Y, Kunitoh-Asari A, Hayakawa K, Imai S, Kasuya K, Abe K, et al. 2014. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS One 9: e86416. https://doi.org/10.1371/journal.pone.0086416
- Rigaux P, Daniel C, Hisbergues M, Muraille E, Hols P, Pot B, et al. 2009. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 64: 406-414. https://doi.org/10.1111/j.1398-9995.2008.01825.x
- Rizzo A, Losacco A, Carratelli CR, Domenico MD, Bevilacqua N. 2013. Lactobacillus plantarum reduces Streptococcus pyogenes virulence by modulating the IL-17, IL-23 and Tolllike receptor 2/4 expressions in human epithelial cells. Int. Immunopharmacol. 17: 453-461. https://doi.org/10.1016/j.intimp.2013.07.005
- Segers ME, Lebeer S. 2014. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb. Cell Fact. 13 Suppl 1: S7. https://doi.org/10.1186/1475-2859-13-S1-S7
- Billack B. 2006. Macrophage activation: role of toll-like receptors, nitricoxide, and nuclear factor kappa B. Am. J. Pharm. Educ. 70: 102. https://doi.org/10.5688/aj7005102
- Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958-969. https://doi.org/10.1038/nri2448
- Fong FL, Kirjavainen PV, El-Nezami H. 2016. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. Sci. Rep. 6: 22845. https://doi.org/10.1038/srep22845
- Fong FLY, Kirjavainen P, Wong VHY, El-Nezami H. 2015. Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J. Functional Foods 13: 71-79. https://doi.org/10.1016/j.jff.2014.12.040
- Parameswaran N, Patial S. 2010. Tumor necrosis factoralpha signaling in macrophages. Crit. Rev. Eukaryot Gene Expr. 20: 87-103. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
- Lee JH, Ahn DU, Paik HD. 2018. In vitro immune-enhancing activity of ovotransferrin from egg white via mapk signaling p athways in RAW 264.7 macrophages. Korean J. Food Sci. Anim. Resour. 38: 1226-1236. https://doi.org/10.5851/kosfa.2018.e56
- Rosales C, Uribe-Querol E. 2017. Phagocytosis: a fundamental process in immunity. Biomed. Res. Int. 2017: 9042851.
- Butprom S, Phumkhachorn P, Rattanachaikunsopon P. 2013. Effect of Lactobacillus plantarum C014 on innate immune response and disease resistance against Aeromonas hydrophila in hybrid catfish. ScientificWorldJournal. 2013: 392523.
- Jang SE, Joh EH, Lee HY, Ahn YT, Lee JH, Huh CS, et al. 2013. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J. Microbiol. Biotechnol. 23: 414-421. https://doi.org/10.4014/jmb.1210.10010
- Ren D, Li C, Qin Y, Yin R, Du S, Liu H, et al. 2015. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe 35: 22-27. https://doi.org/10.1016/j.anaerobe.2015.06.008
- Meng Y, Li B, Jin D, Zhan M, Lu J, Huo G. 2018. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr. Res. 62: doi: 10.29219.
Cited by
- Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1907.07039
- Impact of Heat-Killed Lactobacillus casei Strain IMAU60214 on the Immune Function of Macrophages in Malnourished Children vol.12, pp.8, 2020, https://doi.org/10.3390/nu12082303
- Heat-Killed Lactobacillus brevis Enhances Phagocytic Activity and Generates Immune-Stimulatory Effects through Activating the TAK1 Pathway vol.30, pp.9, 2019, https://doi.org/10.4014/jmb.2002.02004
- Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies vol.10, pp.1, 2020, https://doi.org/10.1186/s13601-020-00362-7
- Microbiota Modulation of the Gut-Lung Axis in COVID-19 vol.12, 2021, https://doi.org/10.3389/fimmu.2021.635471
- Anti-inflammatory potential of Lactiplantibacillus plantarum IDCC 3501 and its safety evaluation vol.52, pp.4, 2019, https://doi.org/10.1007/s42770-021-00603-2
- Molecular and Cellular Mechanisms Influenced by Postbiotics vol.22, pp.24, 2019, https://doi.org/10.3390/ijms222413475
- Evaluation of Antimicrobial and Anticancer Activities of Selected Medicinal Plants of Himalayas, Pakistan vol.11, pp.1, 2019, https://doi.org/10.3390/plants11010048