References
- Organization WH. 2018. GLOBAL TUBERCULOSIS REPORT 2018. http://www.who.int/tb/publications/global_report/en/.
- Rimbu C, Danac R, Pui A. 2014. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands. Chem. Pharm. Bull. (Tokyo) 62: 12-15. https://doi.org/10.1248/cpb.c12-01087
- Chaudhary NK, Mishra P. 2017. Metal complexes of a novel schiff base based on penicillin: characterization, molecular modeling, and antibacterial activity study. Bioinorg. Chem. Appl. 2017: 6927675. https://doi.org/10.1155/2017/6927675
- Siddappa K, Mayana NS. 2014. Synthesis, spectroscopic characterization, and biological evaluation studies of 5-bromo-3-(((hydroxy-2-methylquinolin-7-yl)methylene)hydrazono) indolin-2-one and its metal (II) complexes. Bioinorg. Chem. Appl. 2014: 483282.
- Andiappan K, Sanmugam A, Deivanayagam E, Karuppasamy K, Kim HS, Vikraman D. 2018. In vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes. Sci. Rep. 8(1): 3054. https://doi.org/10.1038/s41598-018-21366-1
- Zhang X, Bi C, Fan Y, Cui Q, Chen D, Xiao Y, et al. 2008. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. Int. J. Mol. Med. 22: 677-682.
- Li L, Guo Q, Dong J, Xu T, Li J. 2013. DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper(II) complex with taurine Schiff base and 1,10-phenanthroline. J. Photochem. Photobiol. B. 125: 56-62. https://doi.org/10.1016/j.jphotobiol.2013.05.007
- Yuan R, Diao Y, Zhang W, Lin Y, Huang S, Zhang H, et al. 2014. In vitro activity of taurine-5-bromosalicylaldehyde Schiff base against planktonic and biofilm cultures of methicillinresistant Staphylococcus aureus. J. Microbiol. Biotechnol. 24: 1059-1064. https://doi.org/10.4014/jmb.1401.01037
- Zhang W, Jones VC, Scherman MS, Mahapatra S, Crick D, Bhamidi S, et al. 2008. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase. Int. J. Biochem. Cell Biol. 40: 2560-2571. https://doi.org/10.1016/j.biocel.2008.05.003
- Chen Y, Xu Y, Yang S, Li S, Ding W, Zhang W. 2019. Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. MicrobiologyOpen 3: e819.
- Yang S, Xu Y, Wang Y, Ren F, Li S, Ding W, et al. 2018. The biological properties and potential interacting proteins of D-alanyl-D-alanine ligase A from Mycobacterium tuberculosis. Molecules 23: E324. https://doi.org/10.3390/molecules23020324
- Marland Z, Beddoe T, Zaker-Tabrizi L, Coppel RL, Crellin PK, Rossjohn J. 2005. Expression, purification, crystallization and preliminary X-ray diffraction analysis of an essential lipoprotein implicated in cell-wall biosynthesis in Mycobacteria. Acta crystallogr. Sec. F, Struct. Biol. Cryst. Commun. 61: 1081-1083. https://doi.org/10.1107/S1744309105037541
- Pan F, Jackson M, Ma Y, McNeil M. 2001. Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J. Bacteriol. 183: 3991-3998. https://doi.org/10.1128/JB.183.13.3991-3998.2001
- Kieser KJ, Baranowski C, Chao MC, Long JE, Sassetti CM, Waldor MK, et al. 2015. Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc. Nat. Acad. Sci. USA 112: 13087-13092. https://doi.org/10.1073/pnas.1514135112
- Rombouts Y, Brust B, Ojha AK, Maes E, Coddeville B, Elass-Rochard E, et al. 2012. Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to Mycolyl-arabinogalactan-peptidoglycan metabolism. J. Biol. Chem. 287: 11060-11069. https://doi.org/10.1074/jbc.M111.327387
- Alderwick LJ, Harrison J, Lloyd GS, Birch HL. 2015. The mycobacterial cell wall--peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. 5: a021113. https://doi.org/10.1101/cshperspect.a021113
- Jankute M, Cox JA, Harrison J, Besra GS. 2015. Assembly of the mycobacterial cell wall. Ann. Rev. Microbiol. 69: 405-423. https://doi.org/10.1146/annurev-micro-091014-104121
- Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514. https://doi.org/10.1128/MMBR.64.3.503-514.2000
- Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270. https://doi.org/10.1016/j.tim.2013.04.001
- Peters NT, Dinh T, Bernhardt TG. 2011. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J. Bacteriol. 193: 4973-4983. https://doi.org/10.1128/JB.00316-11
- Yang DC, Tan K, Joachimiak A, Bernhardt TG. 2012. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol. Microbiol. 85: 768-781. https://doi.org/10.1111/j.1365-2958.2012.08138.x
- Chauviac F-X, Bommer M, Yan J, Parkin G, Daviter T, Lowden P, et al. 2012. Crystal structure of reduced MsAcg, a putative nitroreductase from mycobacterium smegmatisand a close homologue of mycobacterium tuberculosis Acg. J. Biol. Chem. 287: 44372-44383. https://doi.org/10.1074/jbc.M112.406264
- Pitsawong W, Haynes CA, Koder RL, Jr., Rodgers DW, Miller AF. 2017. Mechanism-informed refinement reveals altered substrate-binding mode for catalytically competent nitroreductase. Structure 25: 978-987. https://doi.org/10.1016/j.str.2017.05.002
- Cortial S, Chaignon P, Iorga BI, Aymerich S, Truan G, Gueguen-Chaignon V, et al. 2010. NADH oxidase activity of Bacillus subtilis nitroreductase NfrA1: insight into its biological role. FEBS Lett. 584: 3916-3922. https://doi.org/10.1016/j.febslet.2010.08.019
- Hektor HJ, Kloosterman H, Dijkhuizen L. 2002. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J. Biol. Chem. 277: 46966-46973. https://doi.org/10.1074/jbc.M207547200
- Liu H, Yang M, He ZG. 2016. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis. Sci. Rep. 6: 27489. https://doi.org/10.1038/srep27489
- Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, et al. 2007. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 189: 5903-5915. https://doi.org/10.1128/JB.00257-07
- Valente W, Pienaar E, Fast A, Fluitt A, Whitney S, Fenton R, et al. 2009. A Kinetic Study of In vitro lysis of mycobacterium smegmatis. Chem. Eng. Sci. 64: 1944-1952. https://doi.org/10.1016/j.ces.2008.12.015
- Agrawal P, Miryala S, Varshney U. 2015. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 10: e0122076. https://doi.org/10.1371/journal.pone.0122076
- Namouchi A, Cimino M, Favre-Rochex S, Charles P, Gicquel B. 2017. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery. BMC Genomics 18(1): 530. https://doi.org/10.1186/s12864-017-3924-y
- Verma A, Sampla AK, Tyagi JS. 1999. Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J. Bacteriol. 181: 4326-4333. https://doi.org/10.1128/JB.181.14.4326-4333.1999
- Manca C, Paul S, Barry CEr, Freedman VH, Kaplan G. 1999. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67: 74-79. https://doi.org/10.1128/IAI.67.1.74-79.1999
Cited by
- Exploratory and confirmatory analysis to investigate the presence of vaginal metabolome expression of microbial invasion of the amniotic cavity in women with preterm labor using high-performance liqui vol.224, pp.1, 2021, https://doi.org/10.1016/j.ajog.2020.07.040