그림 1. 설문조사 데이터 모습(일부) Fig. 1 Part of survey data
그림 2. 다항회귀 분석 결과 Fig. 2 Result of multinomial regression analysis
그림 3. CART 알고리즘 적용 결과 Fig. 3 Result of CART algorithm
그림 4. 조건부추론나무 적용 결과 Fig. 4 Result of conditional inference tree
그림 5. 랜덤포레스트 분석 결과 Fig. 5 Result of random forest analysis
그림 6. 방사형 방법 분석 결과 Fig. 6 Result of radial method Analysis
그림 7. 선형 방법 분석 결과 Fig. 7 Result of linear method Analysis
그림 8. 다항 방법 분석 결과 Fig. 8 Result of Polynomial method Analysis
그림 9. 베이지안방법론 분석 결과 Fig. 9 Result of Bayesian method Analysis
References
- Y.Guo, Y. Liu, A. Oerlenmans, S. Lao, S. Wu, and M. Lew, "Deep learning for visual understanding : A review", Neurocomputing, vol. 187, 2016, pp. 27-48. https://doi.org/10.1016/j.neucom.2015.09.116
- S. Kotsiantis, "Decision trees:a recent overview", Artificial Intelligence Review, vol. 39, issue. 4, 2013, pp. 261-283. https://doi.org/10.1007/s10462-011-9272-4
- J. Peng, K. Lee, and C. Ingersoll, "An Introduction to Logistic Regression Analysis and Reporting", The Journal of Education Research, vol., 96. Sept. 2002, pp. 3-14.. https://doi.org/10.1080/00220670209598786
- A. El-Habil, "An Application on Multinomial Logistic Regression Model", Pakistan journal of Statstics and operation Research, vol., 8. no. 2, Mar. 2012, pp. 271-291. https://doi.org/10.18187/pjsor.v8i2.234
- S. Dreiseitl and L. Ohno-Machado, "Logistic regression and artificial neural network classification models: a methodology review", Journal of Biomedical Informatics, vol. 35, 2002, pp. 352-359. https://doi.org/10.1016/S1532-0464(03)00034-0
- P. Bossaerts and P. Hillion, "Implementation Statistical Criteria to Select Return Forecasting Models:What Do We learn?," The Review of Financial Studies Summert, vol. 12, no. 2, 1999, pp. 405-428. https://doi.org/10.1093/rfs/12.2.405
- J. Suykens and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Processing Letters, vol., 9. June. 1999, pp. 293-300. https://doi.org/10.1023/A:1018628609742
- B. Gupta, A. Rawat, A. Jain, A. Arora and N.Dhami, "Analysis of Various Decision Tree Algorithms for Classification in Data Mining," International Journal of Computer Applications, vol. 163, no. 8, Apr. 2017, pp. 15-19. https://doi.org/10.5120/ijca2017913660
- L. Breiman, "Random Forests," Machine Learning, vol. 45, issue. 1, Oct. 2001, pp. 5-32. https://doi.org/10.1023/A:1010933404324
- S. Kim and K. Suk, "Effective real-time identification using Bayesian statistical method gaze Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, 2016, pp. 331-338. https://doi.org/10.13067/JKIECS.2016.11.3.331
- Y. Bae and K. Park, "Performance Comparison of Machine Larning in the Various Kind of Prediction," J. of the Korea Institute of lectronic Communication Science, vol. 14, no. 1, 2019, pp. 169-178.
- W. Hauser, "Marketing analytics:the evolution of marketing research in the twenty-first century," Direct Marketing : An International Journal, vol., 1, no.1, Apr. 2007, pp. 38-54. https://doi.org/10.1108/17505930710734125