DOI QR코드

DOI QR Code

인체 채널에서 전자기파 전송 지연 특성을 고려한 다중 매체 제어 프로토콜 설계

Transmission Latency-Aware MAC Protocol Design for Intra-Body Communications

  • 투고 : 2019.07.04
  • 심사 : 2019.07.15
  • 발행 : 2019.08.31

초록

인체 통신은 인체를 매질로 통신하는 기술로, BAN (Body-Area Network) 환경에서, 무선 통신에 비해 신호 감쇠 측면에서 큰 이점이 있어 배터리로 동작하는 웨어러블 기기 간 통신 시 저전력 통신을 지원할 수 있다. 하지만, 인체 통신은 그 이점에 비해 안전성 등의 문제가 있어 채널 특성에 대한 연구가 미비하였다. 이에 본 논문은 인체 채널 특성에 있어 통신 성능에 영향을 주는 MAC 파라미터를 제시하고, 이를 이용한 새로운 인체 통신 용 MAC 프로토콜을 제안하고, 또한, 각기 다른 가드 인터벌을 설정하여 성능을 분석하였다. 결과로, IEEE 802.15.6 표준 기반 Slotted aloha 프로토콜에 비해 약 300kbps의 Goodput 이득을 가졌으며, Duty cycle 또한 약 7.07%로, 표준의 최소 duty cycle이 약 5%이지만, Goodput을 고려했을 때, 인정할 수 있는 성능이라 볼 수 있다.

Intra-Body Communication (IBC) is a communication method using the human body as a communication medium. The fact that our human body consists of water and electrolyte allow such communication method could work and have strength in low-power. However, because the IBC directly affects to human body by using it as a medium, there was a lack of research in communication protocols of each communication layer. In this paper, we suggests MAC parameters which affects the performance of communication in human body channel, and propose new MAC protocol. Our results shows that our MAC is suitable for supporting high data rate applications with comparable radio duty cycle performance.

키워드

JBCRIN_2019_v8n8_201_f0001.png 이미지

Fig. 1. Two Types of Coupling Methods for Intra-Body Communications

JBCRIN_2019_v8n8_201_f0002.png 이미지

Fig. 2. Proposed Superframe Architecture

JBCRIN_2019_v8n8_201_f0003.png 이미지

Fig. 3. Physical Layer Frame Format

JBCRIN_2019_v8n8_201_f0004.png 이미지

Fig. 4. Packet Structure for the Scheduling Phase

JBCRIN_2019_v8n8_201_f0005.png 이미지

Fig. 5. Packet Format for the Join Phase(Left) and Data(Right)

JBCRIN_2019_v8n8_201_f0006.png 이미지

Fig. 6. MAC Header Frame Format

JBCRIN_2019_v8n8_201_f0007.png 이미지

Fig. 7. State Diagram for the Sink Node

JBCRIN_2019_v8n8_201_f0008.png 이미지

Fig. 8. State Diagram for the Client Nodes

JBCRIN_2019_v8n8_201_f0009.png 이미지

Fig. 9. Goodput for IEEE 802.15.6 Slotted Aloha with Different Data Requests

JBCRIN_2019_v8n8_201_f0010.png 이미지

Fig. 10. Goodput for Phang et al.[12] with Different Data Requests

JBCRIN_2019_v8n8_201_f0011.png 이미지

Fig. 11. Goodput for Proposed Scheme with Different Data Requests

JBCRIN_2019_v8n8_201_f0012.png 이미지

Fig. 12. Duty Cycle Results for IEEE 802.15.6 Slotted Aloha

JBCRIN_2019_v8n8_201_f0013.png 이미지

Fig. 13. Duty Cycle Results for Phang et al.[12]

JBCRIN_2019_v8n8_201_f0014.png 이미지

Fig. 14. Duty Cycle Results for the Proposed Scheme

JBCRIN_2019_v8n8_201_f0015.png 이미지

Fig. 15. Latency Result of IEEE 802.15.6 Slotted Aloha

JBCRIN_2019_v8n8_201_f0016.png 이미지

Fig. 16. Transmission Latency for Phang et al.[12]

JBCRIN_2019_v8n8_201_f0017.png 이미지

Fig. 17. Transmission Latency for the Proposed Scheme

JBCRIN_2019_v8n8_201_f0018.png 이미지

Fig. 18. Maximum Achieved Goodput for Varying Guard Intervals

Table 1. Requirements of MAC Protocol Design for Intra-Body Communications

JBCRIN_2019_v8n8_201_t0001.png 이미지

Table 2. Parameters Used for the IEEE 802.15.6 Slotted Aloha, Phang et al. [12], and the Proposed Scheme. All Parameters Assume a 1Mbps Channel Throughput

JBCRIN_2019_v8n8_201_t0002.png 이미지

Table 3. Contention Probability by Each User Priority(UP)

JBCRIN_2019_v8n8_201_t0003.png 이미지

참고문헌

  1. B. Latre, B. Braem, I. Moerman, C. Blondia, and P. Demeester, "A survey on wireless body area networks," Wireless Networks, Vol.17, No.1, pp.1-18, 2011. https://doi.org/10.1007/s11276-010-0252-4
  2. IEEE Standards Association, "IEEE standard for local and metropolitan area networks-part 15.6: wireless body area networks," IEEE standard, 2012.
  3. F. R. Yazdi, M. Hosseinzadeh, and S. Jabbehdari, "A review of state-of-the-art on wireless body area networks," International Journal of Advanced Computer Science and Applications, Vol.8, No.11, pp.443-455, 2017.
  4. G. Santagati, T. Melodia, L. Galluccio, and S. Palazzo, "Medium Access Control and Rate Adaptation for Ultrasonic Intra-Body Sensor Networks," IEEE/ACM Transactions on Networking(TON), Vol.23, No.4, pp.1121-1134, 2015. https://doi.org/10.1109/TNET.2014.2316675
  5. Korea National Radio Research Agency, Specific Absorption Rate (SAR) standard value [Internet], https://rra.go.kr/ko/license/D_b_benchmark.do
  6. Atmel, "Atmel SAM R21E / SAM R21G SMART ARM-based Wireless Microcontroller datasheet," Jul. 2014, [Revised May. 2016]
  7. Raspberry Pi Ltd., Raspberry Pi Compute Module 3+ Datasheet [Internet], https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
  8. T. G. Zimmerman, "Personal Area Networks: Near-field intrabody communication," IBM Systems Journal, Vol.35, No. 3.4, pp.609-617, 1996. https://doi.org/10.1147/sj.353.0609
  9. K. Hachisuka, A. Nakata, T. Takeda, K. Shiba, K. Sasaki, H. Hosaka, and K. Itao, "Development of wearable intra-body communication devices. Sensors and Actuators A: Physical," Vol.105, No.1, pp.109-115, 2003. https://doi.org/10.1016/S0924-4247(03)00060-8
  10. M. Seyedi, Z. Cai, and D. Lai, "Characterization of Signal Propagation through Limb Joints for Intrabody Communication," International Journal of Biomaterials Research and Engineering, Vol.1, No.2, pp.1-12, 2011. https://doi.org/10.4018/ijbre.2013070101
  11. G. E. Santagati, T. Melodia, L. Galluccio and S. Palazzo, "Ultrasonic networking for E-health applications," IEEE Wireless Communications, Vol.20, No.4, pp.74-81, 2013. https://doi.org/10.1109/MWC.2013.6590053
  12. T. C. Phang, M. H. Mokhtar, M. N. Mokhtar, and F. Z. Rokhani, "Time-division multiple access based intra-body communication for wearable health tracker," in 2016 17th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, 2016, pp.468-472.
  13. S. Kim and J. Ko, "Analyzing Propagation Latency within Human Body for Intra-Body Communication Systems," in Proceedings of Symposium of the Korean Institute of communications and Information Sciences, Seoul, Korea, 2018, pp.34-35.
  14. B. Otgonchimeg and Y. Kwon, "Emergency handling for MAC protocol in human body communication," EURASIP Journal on Wireless Communications and Networking, Vol. 2011, No.786903, pp.1-6, 2011. https://doi.org/10.1186/1687-1499-2011-1