DOI QR코드

DOI QR Code

Time Synchronization Robust to Topology Change Through Reference Node Re-Election

기준노드의 재선정을 통한 토폴로지 변화에 강인한 시간 동기화

  • Received : 2019.05.02
  • Accepted : 2019.06.24
  • Published : 2019.08.31

Abstract

In an Ad-hoc network, a method of time synchronizing all the nodes in a network centering on one reference node can be used. A representative algorithm based on a reference node is Flooding Time Synchronization Protocol (FTSP). In the process of sending and receiving messages, predictable and unpredictable delays occur, which should be removed because it hinders accurate time synchronization. In multi-hop communications, hop delays occur when a packet traverses a number of hops. These hop delays significantly degrade the synchronization performance among nodes. Therefore, we need to find a method to reduce these hop delays and increase synchronization performance. In the FTSP scheme, hop delays can be greatly increased depending on the position of a reference node. In addition, in FTSP, a node with the smallest node ID is elected as a reference node, hence, the position of a reference node is actually arbitrarily determined. In this paper, we propose an optimal reference node election algorithm to reduce hop delays, and compare the performance of the proposed scheme with FTSP using the network simulator OPNET. In addition, we verify that the proposed scheme has an improved synchronization performance, which is robust to topology changes.

애드혹 네트워크에서는 하나의 기준노드를 선정하여 이를 중심으로 네트워크 내에 모든 노드들의 시간을 동기화하는 방법을 사용할 수 있다. 이러한 기준노드를 중심으로 하는 대표적인 시간동기화 알고리즘은 Flooding Time Synchronization Protocol (FTSP) 이다. 메시지를 주고 받는 과정에서 예측할 수 있는 지연과 예측할 수 없는 랜덤 지연이 발생하게 되는데, 이러한 지연은 정확한 동기화를 방해하기 때문에 제거해야 한다. 멀티홉 기반의 통신에서 메시지를 주고받는 과정에 지나는 홉 수에 따라 홉 지연이 발생하게 된다. 이러한 홉 지연은 노드 사이의 동기화 성능을 크게 떨어뜨리게 된다. 따라서 이러한 홉 지연을 줄이고 동기화 성능을 높이기 위한 방법이 필요하다. 기존 FTSP 방식에서 기준 노드가 ID를 기반으로 가장 ID 값이 작은 노드가 기준노드로 선정되기 때문에 기준노드의 위치가 어디냐에 따라서 홉 지연에 따른 성능 저하가 크게 발생할 수 있다. 본 논문에서는 홉 지연을 줄이기 위한 최적의 기준노드 재선정 알고리즘을 제안하고 OPNET 네트워크 시뮬레이터를 사용하여 기존 FTSP와의 성능을 비교한다. 추가적으로 토폴로지 변경에 따른 성능을 측정하여 제안된 방식이 토폴로지 변환에 강인한 성능을 갖고 있음을 확인할 수 있었다.

Keywords

JBCRIN_2019_v8n8_191_f0001.png 이미지

Fig. 1. Message Packet Structure

JBCRIN_2019_v8n8_191_f0002.png 이미지

Fig. 2. a-FTSP Algorithm Transition Diagram

JBCRIN_2019_v8n8_191_f0003.png 이미지

Fig. 3. Mesh Topology Node Placement

JBCRIN_2019_v8n8_191_f0004.png 이미지

Fig. 4. Average Network Error in Mesh Topology

JBCRIN_2019_v8n8_191_f0005.png 이미지

Fig. 5. Maximum Neighbor Error in Mesh Topology

JBCRIN_2019_v8n8_191_f0006.png 이미지

Fig. 6. Line Topology Nodes Placement

JBCRIN_2019_v8n8_191_f0007.png 이미지

Fig. 7. Average Network Error in Line Topology

JBCRIN_2019_v8n8_191_f0008.png 이미지

Fig. 8. Maximum Neighbor Error in Line Topology

JBCRIN_2019_v8n8_191_f0009.png 이미지

Fig. 9. Average Network Error with Varying Number of Nodes

JBCRIN_2019_v8n8_191_f0010.png 이미지

Fig. 10. Maximum Neighbor Error with Varying Number of Nodes

Table 1. System Parameters

JBCRIN_2019_v8n8_191_t0001.png 이미지

Table 2. Average Network Error (us) with Varying Number of Nodes

JBCRIN_2019_v8n8_191_t0002.png 이미지

References

  1. D. Wang and Y. Song, "A novel distributed global time synchronization protocol in cognitive radio ad hoc networks," in 2015 IEEE Global Communications Conference (GLOBECOM), Dec. 2015, pp.1-6.
  2. K. Manolakis and W. Xu, "Time synchronization for multilink D2D/V2X communication," in Proc. IEEE 84th Vehicular Technology Conf. (VTC), 2016, pp.1-6.
  3. W. Sun, F. Brannstrom, and E. G. Strom. "Network Synchronization for Mobile Device-to-Device Systems," IEEE Trans. on Commun., Vol.65, No.3, pp.1193-1206, Mar. 2017. https://doi.org/10.1109/TCOMM.2016.2639504
  4. M. Maroti et al., "The Flooding Time Synchronization Protocol," Proc. 2nd ACM Conf. Embedded Networked Sensor Systems, ACM Press, 2004, pp.39-49.
  5. P. Sommer and R. Wattenhofer, "Gradient clock synchronization in wireless sensor networks," In IPN '09: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, pp.37-48
  6. I.-K. Rhee, J. Lee, J. Kim, E. Serpedin, and Y.-C. Wu, "Clock Synchronization in Wireless Sensor Networks: An Overview," Sensors, Vol.9, pp.56-85, 2009. https://doi.org/10.3390/s90100056
  7. Y. Zhang et al., "Mac-Time-Stamping-based High-accuracy Time Synchronization for Wireless Sensor Networks," International Conference on IEEE Software Networking (ICSN), May 2016.
  8. B. Sundararaman, U. Buy, and A. D. Kshemkalyani, "Clock synchronization for wireless sensor networks: a survey," Ad-Hoc Networks, Vol.3, No.3, pp.281-323, Mar. 2005. https://doi.org/10.1016/j.adhoc.2005.01.002
  9. Y. Bi, H. Shan, X. S. Shen, N. Wang, and H. Zhao, "A multihop broadcast protocol for emergency message dissemination in urban vehicular ad hoc networks," IEEE Trans. Intell. Transp. Syst., Vol.17, No.3, pp.736-750, Mar. 2016. https://doi.org/10.1109/TITS.2015.2481486
  10. U. N. Kar and D. KumarSanyal, "An overview of deviceto-device communication in cellular networks," ICT Express on Science Direct, Vol.4, Iss.4, pp.203-208, Dec. 2018. https://doi.org/10.1016/j.icte.2017.08.002
  11. OPNET, Retrieved May. 2019, from https://www.riverbed.com/sg/index.html
  12. C. Lenzen, P. Sommer, and R. Wattenhofer, "PulseSync: An efficient and scalable clock synchronization protocol," IEEE/ACM Trans. Netw., Vol.23, No.99, pp.717-727, Mar. 2014.
  13. W. Sun, E. G. Strom, F. Brannstrom, and M. R. Gholami, "Random broadcast based distributed consensus clock synchronization for mobile networks," IEEE Trans. Wireless Commun., Vol.14, No.6, pp.3378-3389, Jun. 2015. https://doi.org/10.1109/TWC.2015.2404917
  14. W. Sun, M. R. Gholami, E. G. Ström, and F. Brannstrom, "Distributed clock synchronization with application of D2D communication without infrastructure," in Proc. IEEE GLOBECOM Workshop, Atlanta, GA USA, Dec. 2013, pp. 561-566.
  15. W. Sun, M. R. Gholami, E. G. Strom, and F. Brannstrom, "Distributed clock synchronization with application of D2D communication without infrastructure," in Proc. IEEE GLOBECOM Workshop, Atlanta, GAUSA, Dec. 2013, pp. 561-566.
  16. M. Leng and Y.-C. Wu, "Distributed clock synchronization for wireless sensor networks using belief propagation," IEEE Trans. Signal Process.,Vol.59, No.11, pp.5404-5414, Nov. 2011. https://doi.org/10.1109/TSP.2011.2162832