References
- Mesko B, Drobni Z, Benyei E, Gergely B, Gyorffy Z. Digital health is a cultural transformation of traditional healthcare. Mhealth. 2017;3:38. https://doi.org/10.21037/mhealth.2017.08.07
- Steinhubl SR, Topol EJ. Digital medicine, on its way to being just plain medicine. NPJ Digit Med. 2018;1:20175. https://doi.org/10.1038/s41746-017-0005-1
- U.S. Food & Drug Administration. Digital health innovation action plan. 2019. 8p.
- Choi YS. Digital healthcare: the future of medicine. Seoul: Cloud9. Forthcoming 2019.
- Kim CY, Kang G, Lee JS, Kim BY, Kim YI, Shin Y. Introduction and the current status of hospital information systems. J Korean Soc Med Inform. 1999;5:27-35. https://doi.org/10.4258/jksmi.1999.5.1.27
- Payne PRO, Bernstam EV, Starren JB. Biomedical informatics meets data science: current state and future directions for interaction. JAMIA Open. 2018;1:136-141. https://doi.org/10.1093/jamiaopen/ooy032
- Shortliffe EH, Sepulveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320:2199-2200. https://doi.org/10.1001/jama.2018.17163
- Goldhahn J, Rampton V, Spinas GA. Could artificial intelligence make doctors obsolete? BMJ. 2018;363:k4563. https://doi.org/10.1136/bmj.k4563
- Maddox TM, Rumsfeld JS, Payne PRO. Questions for artificial intelligence in health care. JAMA. 2019;321:31-32. https://doi.org/10.1001/jama.2018.18932
- Israni ST, Verghese A. Humanizing artificial intelligence. JAMA. 2019;321:29-30. https://doi.org/10.1001/jama.2018.19398
- Saria S, Butte A, Sheikh A. Better medicine through machine learning: what's real, and what's artificial? PLoS Med. 2018;15:e1002721. https://doi.org/10.1371/journal.pmed.1002721
- Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28:231-237. https://doi.org/10.1136/bmjqs-2018-008370
- Medicine in the digital age. Nat Med. 2019;25:1. https://doi.org/10.1038/s41591-018-0322-1
- Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med. 2019;25:14-15. https://doi.org/10.1038/s41591-018-0320-3
- Gottesman O, Johansson F, Komorowski M, Faisal A, Sontag D, Doshi-Velez F, Celi LA. Guidelines for reinforcement learning in healthcare. Nat Med. 2019;25:16-18. https://doi.org/10.1038/s41591-018-0310-5
- He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25:30-36. https://doi.org/10.1038/s41591-018-0307-0
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56. https://doi.org/10.1038/s41591-018-0300-7
- Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347-1358. https://doi.org/10.1056/NEJMra1814259
- Lee H, Shin SY, Seo M, Nam GB, Joo S. Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci Rep. 2016;6:32390. https://doi.org/10.1038/srep32390
- Kwon JM, Lee Y, Lee Y, Lee S, Park J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J Am Heart Assoc. 2018;7:e008678. https://doi.org/10.1161/JAHA.118.008678
- Park SH, Do KH, Choi JI, Sim JS, Yang DM, Eo H, Woo H, Lee JM, Jung SE, Oh JH. Principles for evaluating the clinical implementation of novel digital healthcare devices. J Korean Med Assoc. 2018;61:765-775. https://doi.org/10.5124/jkma.2018.61.12.765
- Duggal R, Brindle I, Bagenal J. Digital healthcare: regulating the revolution. BMJ. 2018;360:k6. https://doi.org/10.1136/bmj.k6
- Kourtis LC, Regele OB, Wright JM, Jones GB. Digital biomarkers for Alzheimer's disease: the mobile/wearable devices opportunity. NPJ Digit Med. 2019;2:9. https://doi.org/10.1038/s41746-019-0084-2
- Park YR, Shin SY. Status and direction of healthcare data in Korea for artificial intelligence. Hanyang Med Rev. 2017;37:86-92. https://doi.org/10.7599/hmr.2017.37.2.86
- Budrionis A, Bellika JG. The learning healthcare system: where are we now? a systematic review. J Biomed Inform. 2016;64:87-92. https://doi.org/10.1016/j.jbi.2016.09.018
- Institute of Medicine. A continuously learning health care system. In: Smith M, Saunders R, Stuckhardt L, editors. Best care at lower cost: the path to continuously learning health care in America. Washington (DC): National Academies Press (US); 2013. p.136.
- Mathews SC, McShea MJ, Hanley CL, Ravitz A, Labrique AB, Cohen AB. Digital health: a path to validation. NPJ Digit Med. 2019;2:38. https://doi.org/10.1038/s41746-019-0111-3
- Gunning D, Aha DW. DARPA's explainable artificial intelligence (XAI) program. AI Mag. 2019;40:44-58. https://doi.org/10.1609/aimag.v40i2.2850
- Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052
- Towards trustable machine learning. Nat Biomed Eng. 2018;2:709-710. https://doi.org/10.1038/s41551-018-0315-x
- Shah NR. Health care in 2030: will artificial intelligence replace physicians? Ann Intern Med. 2019;170:407-408. https://doi.org/10.7326/M19-0344
Cited by
- Developing a Transnational Health Record Framework with Level-Specific Interoperability Guidelines Based on a Related Literature Review vol.9, pp.1, 2019, https://doi.org/10.3390/healthcare9010067
- Developing a Digital Twin and Digital Thread Framework for an ‘Industry 4.0’ Shipyard vol.11, pp.3, 2021, https://doi.org/10.3390/app11031097
- Mapping the Korean National Health Checkup Questionnaire to Standard Terminologies vol.27, pp.4, 2019, https://doi.org/10.4258/hir.2021.27.4.287